

Fundamentals of Engineering (FE) CIVIL CBT Exam Specifications

Effective Beginning with the January 2014 Examinations

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 multiple-choice questions. The 6-hour time also includes a tutorial and an optional scheduled break.
- The FE exam uses both the International System of Units (SI) and the US Customary System (USCS).

Knowledge		Number of Questions
A. B. C.	athematics Analytic geometry Calculus Roots of equations Vector analysis	7–11
А. В. С.	robability and Statistics Measures of central tendencies and dispersions (e.g., mean, mode, standard deviation) Estimation for a single mean (e.g., point, confidence intervals) Regression and curve fitting Expected value (weighted average) in decision making	4–6
A.	omputational Tools Spreadsheet computations Structured programming (e.g., if-then, loops, macros)	4–6
A. B. C. D. E.	 chics and Professional Practice Codes of ethics (professional and technical societies) Professional liability Licensure Sustainability and sustainable design Professional skills (e.g., public policy, management, and business) Contracts and contract law 	4–6
А. В. С.	ngineering Economics Discounted cash flow (e.g., equivalence, PW, equivalent annual worth, FW, rate of return) Cost (e.g., incremental, average, sunk, estimating) Analyses (e.g., breakeven, benefit-cost, life cycle) Uncertainty (e.g., expected value and risk)	4–6
A. B. C.	atics Resultants of force systems Equivalent force systems Equilibrium of rigid bodies Frames and trusses	7–11

	E. Centroid of areaF. Area moments of inertiaG. Static friction	
7.	 Dynamics A. Kinematics (e.g., particles and rigid bodies) B. Mass moments of inertia C. Force acceleration (e.g., particles and rigid bodies) D. Impulse momentum (e.g., particles and rigid bodies) E. Work, energy, and power (e.g., particles and rigid bodies) 	4–6
8.	 Mechanics of Materials A. Shear and moment diagrams B. Stresses and strains (e.g., axial, torsion, bending, shear, thermal) C. Deformations (e.g., axial, torsion, bending, thermal) D. Combined stresses E. Principal stresses F. Mohr's circle G. Column analysis (e.g., buckling, boundary conditions) H. Composite sections I. Elastic and plastic deformations J. Stress-strain diagrams 	7–11
9.	 Materials A. Mix design (e.g., concrete and asphalt) B. Test methods and specifications (e.g., steel, concrete, aggregates, asphalt, wood) C. Physical and mechanical properties of concrete, ferrous and nonferrous metals, masonry, wood, engineered materials (e.g., FRP, laminated lumber, wood/plastic composites), and asphalt 	4–6
10.	Fluid MechanicsA. Flow measurementB. Fluid propertiesC. Fluid staticsD. Energy, impulse, and momentum equations	4–6
11.	 Hydraulics and Hydrologic Systems A. Basic hydrology (e.g., infiltration, rainfall, runoff, detention, flood flows, watersheds) B. Basic hydraulics (e.g., Manning equation, Bernoulli theorem, open-channel flow, pipe flow) C. Pumping systems (water and wastewater) D. Water distribution systems E. Reservoirs (e.g., dams, routing, spillways) F. Groundwater (e.g., flow, wells, drawdown) G. Storm sewer collection systems 	8–12
12.	 Structural Analysis A. Analysis of forces in statically determinant beams, trusses, and frames B. Deflection of statically determinant beams, trusses, and frames C. Structural determinacy and stability analysis of beams, trusses, and frames 	6–9

		Loads and load paths (e.g., dead, live, lateral, influence lines and moving loads, tributary areas) Elementary statically indeterminate structures	
13.	A.	ructural Design Design of steel components (e.g., codes and design philosophies, beams, columns, beam-columns, tension members, connections) Design of reinforced concrete components (e.g., codes and design philosophies, beams, slabs, columns, walls, footings)	6–9
14.	A. B. C. D. E. F. G. H. I. J. K. L. M.	Geology Index properties and soil classifications Phase relations (air-water-solid) Laboratory and field tests Effective stress (buoyancy) Stability of retaining walls (e.g., active pressure/passive pressure) Shear strength Bearing capacity (cohesive and noncohesive) Foundation types (e.g., spread footings, deep foundations, wall footings, mats) Consolidation and differential settlement Seepage/flow nets Slope stability (e.g., fills, embankments, cuts, dams) Soil stabilization (e.g., chemical additives, geosynthetics) Drainage systems Erosion control	9–14
15.	A. B. C. D. E. F. G.	Ansportation Engineering Geometric design of streets and highways Geometric design of intersections Pavement system design (e.g., thickness, subgrade, drainage, rehabilitation) Traffic safety Traffic capacity Traffic flow theory Traffic flow theory Traffic control devices Transportation planning (e.g., travel forecast modeling)	8–12
16.	A. B. C. D.	Vironmental Engineering Water quality (ground and surface) Basic tests (e.g., water, wastewater, air) Environmental regulations Water supply and treatment Wastewater collection and treatment	6–9

17. Construction

- A. Construction documents
- B. Procurement methods (e.g., competitive bid, qualifications-based)
- C. Project delivery methods (e.g., design-bid-build, design build, construction management, multiple prime)
- D. Construction operations and methods (e.g., lifting, rigging, dewatering and pumping, equipment production, productivity analysis and improvement, temporary erosion control)
- E. Project scheduling (e.g., CPM, allocation of resources)
- F. Project management (e.g., owner/contractor/client relations)
- G. Construction safety
- H. Construction estimating

18. Surveying

- A. Angles, distances, and trigonometry
- B. Area computations
- C. Earthwork and volume computations
- D. Closure
- E. Coordinate systems (e.g., state plane, latitude/longitude)
- F. Leveling (e.g., differential, elevations, percent grades)

4–6