

Fundamentals of Engineering (FE) ELECTRICAL AND COMPUTER CBT Exam Specifications

Effective Beginning with the January 2014 Examinations

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 multiple-choice questions. The 6-hour time also includes a tutorial and an optional scheduled break.
- The FE exam uses both the International System of Units (SI) and the US Customary System (USCS).

Knowledge		Number of Questions
A. B. C. D. E. F. G.	Algebra and trigonometry Complex numbers Discrete mathematics Analytic geometry Calculus Differential equations Linear algebra Vector analysis	11–17
A. B. C.	obability and Statistics Measures of central tendencies and dispersions (e.g., mean, mode, standard deviation) Probability distributions (e.g., discrete, continuous, normal, binomial) Expected value (weighted average) in decision making Estimation for a single mean (e.g., point, confidence intervals, conditional probability)	4–6
A. B.	hics and Professional Practice Codes of ethics (professional and technical societies) NCEES Model Law and Model Rules Intellectual property (e.g., copyright, trade secrets, patents)	3–5
A. B. C.	ngineering Economics Time value of money (e.g., present value, future value, annuities) Cost estimation Risk identification Analysis (e.g., cost-benefit, trade-off, breakeven)	3–5
A. B. C.	operties of Electrical Materials Chemical (e.g., corrosion, ions, diffusion) Electrical (e.g., conductivity, resistivity, permittivity, magnetic permeability) Mechanical (e.g., piezoelectric, strength) Thermal (e.g., conductivity, expansion)	4–6

6.	Engineering Sciences A. Work, energy, power, heat	6–9
	B. Charge, energy, current, voltage, power	
	C. Forces (e.g., between charges, on conductors)	
	D. Work done in moving a charge in an electric field (relationship between	
	voltage and work)	
	E. Capacitance	
	F. Inductance	
7.	Circuit Analysis (DC and AC Steady State)	10–15
	A. KCL, KVL	
	B. Series/parallel equivalent circuits	
	C. Thevenin and Norton theorems	
	D. Node and loop analysisE. Waveform analysis (e.g., RMS, average, frequency, phase, wavelength)	
	F. Phasors	
	G. Impedance	
B .	Linear Systems	5–8
0.	A. Frequency/transient response	5.0
	B. Resonance	
	C. Laplace transforms	
	D. Transfer functions	
	E. 2-port theory	
9.	Signal Processing	5–8
	A. Convolution (continuous and discrete)	
	B. Difference equations	
	C. Z-transforms	
	D. Sampling (e.g., aliasing, Nyquist theorem)	
	E. Analog filtersF. Digital filters	
10.	Electronics	7–11
	A. Solid-state fundamentals (e.g., tunneling, diffusion/drift current, energy bands, doping bands, p-n theory)	
	B. Discrete devices (diodes, transistors, BJT, CMOS) and models and	
	their performance	
	C. Bias circuits	
	D. Amplifiers (e.g., single-stage/common emitter, differential)	
	E. Operational amplifiers (ideal, non-ideal)	
	F. Instrumentation (e.g., measurements, data acquisition, transducers)	
	G. Power electronics	
11.	Power	8–12
	A. Single phase and three phase	
	B. Transmission and distribution	
	C. Voltage regulation	
	D. Transformers E. Motors and generators	
	F. Power factor (pf)	

12.	 Electromagnetics A. Maxwell equations B. Electrostatics/magnetostatics (e.g., measurement of spatial relationships, vector analysis) C. Wave propagation D. Transmission lines (high frequency) E. Electromagnetic compatibility 	5–8
13.	 Control Systems A. Block diagrams (feed-forward, feedback) B. Bode plots C. Closed-loop and open-loop response D. Controller performance (gain, PID), steady-state errors E. Root locus F. Stability G. State variables 	6–9
14.	 Communications A. Basic modulation/demodulation concepts (e.g., AM, FM, PCM) B. Fourier transforms/Fourier series C. Multiplexing (e.g., time division, frequency division) D. Digital communications 	5–8
15.	Computer NetworksA. Routing and switchingB. Network topologies/frameworks/modelsC. Local area networks	3–5
16.	 Digital Systems A. Number systems B. Boolean logic C. Logic gates and circuits D. Logic minimization (e.g., SOP, POS, Karnaugh maps) E. Flip-flops and counters F. Programmable logic devices and gate arrays G. State machine design H. Data path/controller design I. Timing (diagrams, asynchronous inputs, races, hazards) 	7–11
17.	 Computer Systems A. Architecture (e.g., pipelining, cache memory) B. Microprocessors C. Memory technology and systems D. Interfacing 	4–6
18.	 Software Development A. Algorithms B. Data structures C. Software design methods (structured, object-oriented) D. Software implementation (e.g., procedural, scripting languages) E. Software testing 	4–6