• The exam topics have not changed since April 2015 when they were originally published.
• The exam is computer-based. It is closed book with electronic references. The NCEES PE Civil Reference Handbook is included in the exam along with the design standards shown on the last two pages.
• Examinees have 9 hours to complete the exam, which contains 80 questions. The 9-hour time includes a tutorial and an optional scheduled break. Examinees work all questions.
• The exam uses both the International System of units (SI) and the U.S. Customary System (USCS).
• The exam is developed with questions that require a variety of approaches and methodologies, including design, analysis, and application.
• The examples specified in knowledge areas are not exclusive or exhaustive.

1. Project Planning
 A. Quantity take-off methods
 B. Cost estimating
 C. Project schedules
 D. Activity identification and sequencing

2. Means and Methods
 A. Construction loads
 B. Construction methods
 C. Temporary structures and facilities

3. Soil Mechanics
 A. Lateral earth pressure
 B. Soil consolidation
 C. Effective and total stresses
 D. Bearing capacity
 E. Foundation settlement
 F. Slope stability

4. Structural Mechanics
 A. Dead and live loads
 B. Trusses
 C. Bending (e.g., moments and stresses)
 D. Shear (e.g., forces and stresses)
 E. Axial (e.g., forces and stresses)
 F. Combined stresses
 G. Deflection
 H. Beam
 I. Columns
 J. Slabs

Number of Questions
4–6

3–5

5–8

5–8
K. Footings
L. Retaining walls

5. **Hydraulics and Hydrology**
 A. Open-channel flow
 B. Stormwater collection and drainage (e.g., culvert, stormwater inlets, gutter flow, street flow, storm sewer pipes)
 C. Storm characteristics (e.g., storm frequency, rainfall measurement and distribution)
 D. Runoff analysis (e.g., Rational and SCS/NRCS methods, hydrographic application, runoff time of concentration)
 E. Detention/retention ponds
 F. Pressure conduit (e.g., single pipe, force mains, Hazen-Williams, Darcy-Weisbach, major and minor losses)
 G. Energy and/or continuity equation (e.g., Bernoulli)

6. **Geometrics**
 A. Basic circular curve elements (e.g., middle ordinate, length, chord, radius)
 B. Basic vertical curve elements
 C. Traffic volume (e.g., vehicle mix, flow, and speed)

7. **Materials**
 A. Soil classification and boring log interpretation
 B. Soil properties (e.g., strength, permeability, compressibility, phase relationships)
 C. Concrete (e.g., nonreinforced, reinforced)
 D. Structural steel
 E. Material test methods and specification conformance
 F. Compaction

8. **Site Development**
 A. Excavation and embankment (e.g., cut and fill)
 B. Construction site layout and control
 C. Temporary and permanent soil erosion and sediment control (e.g., construction erosion control and permits, sediment transport, channel/outlet protection)
 D. Impact of construction on adjacent facilities
 E. Safety (e.g., construction, roadside, work zone)

9. **Site Characterization**
 A. Interpretation of available existing site data and proposed site development data (e.g., aerial photography, geologic and topographic maps, GIS data, as-built plans, planning studies and reports)
 B. Subsurface exploration planning
 C. Geophysics (e.g., GPR, resistivity, seismic methods)
 D. Drilling techniques (e.g., hollow stem auger, cased boring, mud rotary, air rotary, rock coring, sonic drilling)
 E. Sampling techniques (e.g., split-barrel sampling, thin-walled tube sampling, handling and storage)
 F. In situ testing (e.g., standard penetration testing, cone penetration testing, pressure meter testing, dilatometer testing, field vane shear)
 G. Description and classification of soils (e.g., Burmeister, Unified Soil Classification System, AASHTO, USDA)
 H. Rock classification and characterization (e.g., recovery, rock quality designation, RMR, weathering, orientation)
 I. Groundwater exploration, sampling, and characterization
10. **Soil Mechanics, Laboratory Testing, and Analysis**
 A. Index properties and testing
 B. Strength testing of soil and rock
 C. Stress-strain testing of soil and rock
 D. Permeability testing properties of soil and rock
 E. Effective and total stresses

11. **Field Materials Testing, Methods, and Safety**
 A. Excavation and embankment, borrow source studies, laboratory and field compaction
 B. Trench and construction safety
 C. Geotechnical instrumentation (e.g., inclinometer, settlement plates, piezometer, vibration monitoring)

12. **Earthquake Engineering and Dynamic Loads**
 A. Liquefaction analysis and mitigation techniques
 B. Seismic site characterization, including site classification using ASCE 7
 C. Pseudo-static analysis and earthquake loads

13. **Earth Structures**
 A. Slab on grade
 B. Ground improvement (e.g., grouting, soil mixing, preconsolidation/wicks, lightweight materials)
 C. Geosynthetic applications (e.g., separation, strength, filtration, drainage, reinforced soil slopes, internal stability of MSE)
 D. Slope stability and slope stabilization
 E. Earth dams, levees, and embankments
 F. Landfills and caps (e.g., interface stability, drainage systems, lining systems)
 G. Pavement structures (rigid, flexible, or unpaved), including equivalent single-axle load (ESAL), pavement thickness, subgrade testing, subgrade preparation, maintenance and rehabilitation treatments
 H. Settlement

14. **Groundwater and Seepage**
 A. Seepage analysis/groundwater flow
 B. Dewatering design, methods, and impact on nearby structures
 C. Drainage design/infiltration
 D. Grouting and other methods of reducing seepage

15. **Problematic Soil and Rock Conditions**
 A. Karst; collapsible, expansive, and sensitive soils
 B. Reactive/corrosive soils
 C. Frost susceptibility

16. **Earth Retaining Structures (ASD or LRFD)**
 A. Lateral earth pressure
 B. Load distribution
 C. Rigid retaining wall stability analysis (e.g., CIP, gravity, external stability of MSE, crib, bin)
 D. Flexible retaining wall stability analysis (e.g., soldier pile and lagging, sheet pile, secant pile, tangent pile, diaphragm walls, temporary support of excavation, braced and anchored walls)
 E. Cofferdams
F. Underpinning (e.g., effects on adjacent construction)
G. Ground anchors, tie-backs, soil nails, and rock anchors for foundations and slopes

17. **Shallow Foundations (ASD or LRFD)**
 A. Bearing capacity
 B. Settlement, including vertical stress distribution

18. **Deep Foundations (ASD or LRFD)**
 A. Single-element axial capacity (e.g., driven pile, drilled shaft, micropile, helical screw piles, auger cast piles)
 B. Lateral load and deformation analysis
 C. Single-element settlement
 D. Downdrag
 E. Group effects (e.g., axial capacity, settlement, lateral deflection)
 F. Installation methods/hammer selection
 G. Pile dynamics (e.g., wave equation, high-strain dynamic testing, signal matching)
 H. Pile and drilled-shaft load testing
 I. Integrity testing methods (e.g., low-strain impact integrity testing, ultrasonic cross-hole testing, coring, thermal integrity testing)
NCEES Principles and Practice of Engineering Examination
GEOTECHNICAL Design Standards

Effective Beginning with the January 2022 Examination

In addition to the NCEES PE Civil Reference Handbook, the following codes and standards will be supplied in the exam as searchable, electronic pdf files with links for easy navigation. This NCEES YouTube video shows how standards will be presented on the exam. Standards will be provided as individual chapters on the exam, and only one chapter at a time can be opened and searched. This ensures the exam software runs large files effectively.

The handbook and design standards will be available the entire exam, though design standards are not needed for the breadth portion.

Solutions to exam questions that reference a standard of practice are scored based on this list and the revision year shown. Solutions based on other standards will not receive credit.

NCEES does not sell design standards or printed copies of the NCEES handbook. The NCEES handbook is accessible from your MyNCEES account.

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>DESIGN STANDARD TITLE</th>
</tr>
</thead>
</table>
FHWA NHI-16-010
GEC No. 12

FHWA NHI-16-072
GEC No. 5

FHWA NHI-18-024
GEC No. 10

NAVFAC DM-7.02

CFR TITLE 29
Part 1926

- Subpart CC, Cranes and Derricks in Construction, Part 1926.1400–1926.1442 with Appendix A–Appendix C
- Subpart E, Personal Protective and Life Saving Equipment, Part 1926.95–1926.107
- Subpart M, Fall Protection, 1926.500–1926.503 with Appendix A–Appendix E
- Subpart P, Excavations, 1926.650–1926.652 with Appendix A–Appendix F

UFC 3-220-01

UFC 3-220-05

UFC 3-220-10N