Project Overview

Introduction
Studies have shown that power-assisted mobility has positive effects on the development of mobility and socialization skills in children with motor disabilities. However, commercially available motorized wheelchairs are not regularly approved by insurance for children under three years of age. The out-of-pocket cost for a motorized wheelchair would be outside the budget of many families that are already paying for specialized health care costs. The Cerebral Palsy Foundation has created collaborative networks to bring together medical institutions and innovative thinkers in diverse areas such as engineering to address this issue. The Cerebral Palsy Foundation recommends the Go Baby Go (GBG) program, a community-based research and design program that focuses on affording children with limited mobility a means to engage in their everyday activities like their peers without physical limitations. A primary goal is to provide students a significant design experience in which they demonstrate knowledge and skills acquired, technical and non-technical. Students incorporated relevant engineering standards and realistic constraints in this work.

Project Description
The purpose of this project is to design, build, and implement an upgrade to commercially available ride-on vehicles for disabled children of ages 13-months to 3-years. The project provides an economical solution to combat the issues associated with limited mobility. This solution involves supplying the children with Modified Ride-On Cars (MROCs). MROCs are customized electric toy cars that are altered to accommodate the specific needs of individual children. MROCs are an ideal alternative to purchasing expensive motorized chairs that many families can not afford. GBG aims to provide additional opportunities for early skill development, and the vehicles allow the children to gain independence and the ability to socialize with others more readily.

Challenges

- **Multidisciplinary Participation**
 - **Mechanical**
 - Provide Postural Supports
 - Install Emergency Stop Switch
 - Replace Accelerator with Push-buttons or Joysticks for Accelerator Pedal
 - **Electrical**
 - Remove Lurch or Sudden Acceleration
 - Meet the System Requirements for a Variety of Small Electric Cars
 - Install a Data Logger
 - Allow for the Continued Use of Radio Control by Guardians

Develop for public use a list of material for the Mechanical and Electrical Systems.

- **Spring 2019 students develop the MOD concepts to remove the sudden acceleration, provide structural postural support, remove ability to steer if needed, and reduce maximum speed of cars.**
- **September 2019 to May of 2020 students completed the design of the electrical controls hardware and developed software to control the maximum speed for forward and reverse and control the rate of acceleration and acquired a free software license.**
- **September 2020 to May 2021 students incorporated a data logger into the electrical control system, installed an emergency stop switch, substituted a large push button for the accelerator pedal, improved structures for postural support, and created a blog to communicate design concepts and solutions from remote locations due to the pandemic.**
- **Developed an “Authorization and Release of Liability” between the universities and parents of the children.**

Multi-Professional Collaboration

<table>
<thead>
<tr>
<th>Mentors consisting of Electrical, Mechanical, Civil, and Computer Engineers supported the students throughout the project’s development. Industry collaboration included the local chapter of TSPE and the local section of IEEE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks</td>
</tr>
<tr>
<td>Electric Shock</td>
</tr>
<tr>
<td>Overheating of Components</td>
</tr>
<tr>
<td>Vehicle Collision</td>
</tr>
</tbody>
</table>

Public Health and Safety

Skills Gained

- **Soft Skills**
 - Communication
 - Creativity
 - Collaboration
 - Time Management
 - Critical Thinking
 - Interactive Design
 - Problem Solving

- **Technical Skills**
 - Schematic Design
 - Hardware Design and Development
 - Software Design and Development
 - Electrical Wiring
 - Multisim
 - Reverse Engineering
 - Create a Blog
 - Acquire a Free Software License

<table>
<thead>
<tr>
<th>Cost</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars for this project cost from $150 to $200. The cost for the electrical components, and postural supports is $100 for all features described. Cost greatly depends on a child’s needs.</td>
<td>The goals of providing an economical MROC were obtained. Students are proud of their accomplishments as are the professional engineers who mentored them. Students were evaluated at each milestone by faculty and professionals. Projects are undertaken for many reasons, but few are as fulfilling as helping a disabled child and their family.</td>
</tr>
</tbody>
</table>

https://ncees.org/index.php?gf-download=2021%2F05%2FCollaborat...e76237e9c0ed624c83ad779567531e1