ERRATA for FE Chemical Practice Exam ISBN: 978-1-947801-03-5 Copyright ©2020, 1st printing January 2020 Errata posted 09/07/2022

Revisions are shown in red.

Question 24, p. 20:

The balanced equation and molecular weights for reactants and products in the anaerobic digestion of an organic material are as follows:

 $\mathrm{C_{60}H_{95}O_{38}N+18}\ \mathrm{H_2O} \rightarrow 32\ \mathrm{CH_4+28}\ \mathrm{CO_2+NH_3}$

Compound	MW
C ₆₀ H ₉₅ O ₃₈ N	1,437
H ₂ O	18
CH ₄	16
CO ₂	44
NH ₃	17

The weight (lb) of methane produced per 2,000 lb of organic material would be most nearly_____.

Question 35, p. 24:

O A. 160

- O B. 250
- O C. 300
- O D. 420

Solution Table, p. 60: Number 24 in the table should be 712–713.

Solution 4, p. 62: Volume = 100.1 ml, 4 significant figures Weight = 100.1 g, 4 significant figures Pipette = 1.01 ml, 3 significant figures

THE CORRECT ANSWER IS: C

Solution 16, p. 67:

Refer to the Relationship Between Hardness and Tensile Strength section in the Materials Science/Structure of Matter chapter of the *FE Reference Handbook*.

By definition, a metal with high hardness has a high tensile and yield strength, as well as strong intermolecular bonding, with high impact, rebound, and scratch resistance strength.

THE CORRECT ANSWERS ARE: B, C, D, AND F

ERRATA for FE Chemical Practice Exam ISBN: 978-1-947801-03-5 Copyright ©2020, 1st printing January 2020 Errata posted 09/07/2022

Solution 17, p. 67:

Refer to the Corrosion section in the Materials Science/Structure of Matter chapter of the *FE Reference Handbook*. Aluminum is anodic relative to copper and therefore will corrode to protect the copper.

THE CORRECT ANSWER IS: B

Solution 24, p. 69:

$$\underbrace{C_{60}H_{95}O_{38}N}_{1,437} + 18 H_2O \rightarrow \underbrace{32 CH_4}_{(32)(16)=512} + 28 CO_2 + NH_3$$

CH₄ lb = 2,000 lb $\left(\frac{512}{1,437}\right) = 712.6$ lb

THE CORRECT ANSWER IS: 712–713

Solution 35, p. 73:

Refer to the P-*h* diagram for Refrigerant HFC-134a in the Thermodynamics chapter of the *FE Reference Handbook*.

The enthalpy at 0.1 quality and $20^{\circ}C = 250 \text{ kJ/kg}$.

The enthalpy at saturated vapor and $20^{\circ}C = 410 \text{ kJ/kg}$.

410 - 250 = 160 kJ/kg

THE CORRECT ANSWER IS: A

ERRATA for FE Chemical Practice Exam ISBN: 978-1-947801-03-5 Copyright ©2020, 1st printing January 2020 Errata posted 09/07/2022

Solution 60, p. 85:

The Dimensionless Group equation (Sherwood) is given in the Chemical Engineering section of the *FE Reference Handbook*.

$$\frac{k_m D}{D_m} = 0.023 \left(\frac{DV\rho}{\mu}\right)^{0.8} \left(\frac{\mu}{\rho D_m}\right)^{1/3}$$

Using the definitions of the Reynolds and Schmidt numbers, the following form of the equation is obtained:

$$\frac{k_m D}{D_m} = 0.023 \text{ Re}^{0.8} \text{ Sc}^{1/3}$$

$$\frac{k_m D}{D_m} = 0.023(30,000)^{0.8} (6)^{1/3} = 159.52$$

 $k_{m} = 159.52 \frac{D_{m}}{D} = 159.52 \frac{1 \times 10^{-5} \frac{\text{cm}^{2}}{\text{5 cm}}}{5 \text{ cm}} = 3.19 \times 10^{-4} \frac{\text{cm}}{\text{s}} = 3.19 \times 10^{-4} \frac{\text{mol}}{\text{cm}^{2} \cdot \text{s} \cdot \frac{\text{mol}}{\text{cm}^{3}}}$

Assume that liquid in contact with the surface of the tube is at equilibrium concentration.

Flux =
$$k_m (C_{\text{surface}} - C_{\text{bulk}}) = 3.19 \times 10^{-4} \frac{\text{mol}}{\text{cm}^2 \cdot \text{s} \cdot \frac{\text{mol}}{\text{cm}^3}} \left(2 \times 10^{-4} \frac{\text{mol}}{\text{cm}^3} - 0 \frac{\text{mol}}{\text{cm}^3} \right)$$

= $6.38 \times 10^{-8} \frac{\text{mol}}{\text{cm}^2 \cdot \text{s}} \left(\frac{100 \text{ cm}}{1 \text{ m}} \right)^2 = 6.38 \times 10^{-4} \text{ mol}/(\text{s} \cdot \text{m}^2)$

THE CORRECT ANSWER IS: A