Revisions are shown in red.

Question 103, Vertical Forces, p. 14
The options should read as follows:

(A) 1.7
(B) 2.5
(C) 3.9
(D) 5.0

Question 123, Vertical Forces, p. 31
The options and graphic should read as follows:

(A) 764
(B) 895
(C) 957
(D) 1,020

![Diagram](image)

Question 124, Vertical Forces, p. 32
The assumptions should read as follows:

The header is fully braced. Lateral-torsional buckling and distortional buckling need **not** be considered.
The track sections stiffen the flanges of the 800S200 sections.

Solutions Table, Vertical Forces, p. 70
123: The correct answer is A.
Solution 103, Vertical Forces, p. 71
The solution should read as follows:

ASCE 7, Figure 7.6-1 Formula.
\[\frac{h_d}{I_s} = \left(\frac{0.43}{l_u} \frac{\sqrt{p_g + 10}}{4} \right) - 1.5 \]
\[p_g = 30, \quad l_u = 100 \text{ ft} \quad \text{given) \quad \text{Risk Category IV} \quad \therefore I_s = 1.20 \quad \text{ASCE 7 Table 1.5-2} \]
\[h_d = \left[\left(0.43 \sqrt{100} \frac{\sqrt{30 + 10}}{4} \right) - 1.5 \right] \left(\sqrt{1.20} \right) = 3.86 \text{ ft} \]

Solution 123, Vertical Forces, p. 83
The solution should read as follows:

Strength I, \(M_a = 1.25(25.8 \text{ ft-kips}) + 1.75(492.7 \text{ ft-kips}) \quad \text{AASHTO Table 3.4.1-1} \]
\[= 894.5 \text{ ft-kips} \]

THE CORRECT ANSWER IS: (B)
Solution 124, Vertical Forces, p. 83
The solution should read as follows:

ASD option:
\[M_{ne} = S_c F_n \]
\[\text{AISI Eq. F3.1-1} \]

Since header is fully braced, \(F_n = F_y \)
\[M_{ne} = \frac{2(0.812)(33)(1,000)}{12} = 4,466 \text{ ft-lb} \]
\[\frac{M_{ne}}{\Omega_b} = \frac{4,466 \text{ ft-lb}}{1.67} = 2,674 \text{ ft-lb} \]

LRFD option:
\[M_{ne} = S_c F_n \]
\[\text{AISI Eq. F3.1-1} \]

Since header is fully braced, \(F_n = F_y \)
\[M_{ne} = \frac{2(0.812)(33)(1,000)}{12} = 4,466 \text{ ft-lb} \]
\[\phi_b M_{ne} = 0.90(4,466) = 4,019 \text{ ft-lb} \]

THE CORRECT ANSWER IS: (B)

Solution 125, Vertical Forces, p. 84
The solution should read as follows:

\[d_e = d_s = 60 - 1.5 - \frac{1.128}{2} - 0.625 = 57.31 \text{ in.} \]
\[\text{AASHTO 5.3} \]

\[a = \frac{A_s f_y}{\alpha_1 f'\ell b} = \frac{10 \times 1.00 \times 60}{0.85 \times 4 \times 36} = 4.902 \text{ in.} \]
\[\text{AASHTO 5.6.2.2} \]

\[d_v = \frac{a}{2} = \frac{57.31 - 4.902}{2} \]
\[= 54.86 \text{ in.} \]
\[\text{AASHTO 5.3} \]

\[0.9 d_e = 51.58 \text{ in.} < 54.86 \text{ in.} \]
\[0.72 h = 43.2 \text{ in.} < 54.86 \text{ in.} \]
\[\text{AASHTO 5.7.2.8} \]
Question 124, Lateral Forces, p. 163
The solution should read as follows:

An office building is supported by special concentrically braced frames.

Design Codes:

Design Data:
- Seismic Design Category: D
- Hollow structural section tubes: A500 Grade C

Assumption:
- Amplified seismic brace force = 175 kips.

The required tensile strength of the bracing connection (kips) is most nearly:

<table>
<thead>
<tr>
<th></th>
<th>ASD</th>
<th>LRFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>(B)</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>(C)</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>(D)</td>
<td>120</td>
<td>175</td>
</tr>
</tbody>
</table>

Question 125, Lateral Forces, p. 164
The options should read as follows:

(A) 71
(B) 142
(C) 155
(D) 219

Question 128, Lateral Forces, p. 167
The options should read as follows:

(A) 30
(B) 36
(C) 46
(D) 60
Question 801, Lateral Forces—Buildings, p. 167
The following design data was added:

Design Data:
Wind Basic wind speed = 142 mph
Exposure C
K_zt = 1.67
K_e = 1.0

Solution 124, Lateral Forces, p. 217
R_y = 1.3
F_y = 50 ksi

ASD option:
\[\frac{R_y F_y A_g}{1.5} = \frac{(1.3)(50 \text{ ksi})(2.24 \text{ in}^2)}{1.5} = 97.1 \text{ kips} \]

LRFD option:
\[R_y F_y A_g = (1.3)(50 \text{ ksi})(2.24 \text{ in}^2) = 145.6 \text{ kips} \]

Solution 125, Lateral Forces, p. 217
The solution should read as follows:

The required tensile strength is the lesser of:

a. The expected yield strength, in tension, of the brace: \(R_y F_y A_g \)

b. The maximum load effect that can be transferred to the system

\[R_y = 1.3 \quad \text{HSS ASTM A500 Grade C} \]

\[A_g = 3.37 \text{ in}^2 \]

\[R_y F_y A_g = (1.3)(50 \text{ ksi})(3.37 \text{ in}^2) = 219 \text{ kips} \]
Solution 128, Lateral Forces, p. 220
The solution should read as follows:

\[l_d = l_{db} \times \left(\frac{\lambda_r \lambda_{cf} \lambda_{rc} \lambda_{er}}{\lambda} \right) \]

\[l_{db} = 2.4d_b \frac{f_y}{\sqrt{f_c'}} \quad ; \quad d_b = 1.27" \quad , \quad f_y = 60 \text{ ksi}, \quad f_c' = 4 \text{ ksi} \]

\[= 2.4(1.27) \frac{60}{\sqrt{4}} = 91.4" \]

\[\lambda_{rl} = 1.0; \quad \lambda_{cf} = 1.0 \quad \text{(not coated)}; \quad \lambda = 1.0; \quad \text{assume } \lambda_{er} = 1.0 \]

\[\lambda_{rc} = \frac{d_b}{c_b + K_{tr}} = \frac{1.27"}{c_b + K_{tr}} \]

\(c_b = \text{smaller of (center of bar to face of member or 1/2 c/c bar sp.)} \)

\[c_b = \min \left[2" \text{ cover} + 0.5" \text{ spiral} + 1/2 (1.27" \text{ bar}), 1/2 (5" \text{ spacing}) \right] \]

\[c_b = 2.5" \]

\[\therefore \lambda_{rc} = \frac{1.27"}{2.5 + 2} = 0.28 < 0.4; \quad \text{therefore, use } 0.4 \quad K_{tr} = 40A_{tr} / (sn) \]

\[A_{tr} = 0.2 \text{ in}^2; \quad s = 4"; \quad n = 1 \]

\[K_{tr} = 40(0.2) / 4(1) = 2 \]

\[\therefore l_d = 91.4" \left(\frac{1.0 \times 1.0 \times 0.4 \times 1.0}{1.0} \right) \]

\[= 36.6" \times 1.25 = 45.8" \quad \text{AASHTO 5.11.4.3} \]

THE CORRECT ANSWER IS: (C)
Solution 801, Lateral Forces—Buildings, p. 228
The following was added under the (b) in the solution:

(b) Design wind pressure on the parapet

\[p = q_p (G_{C_p} - G_{C_{pi}}) \]

Components and cladding elements of parapets

\[q_p = 0.00256 K_z K_{zt} K_d K_e V^2 \]

ASCE 7 Eq. 26.10-1

K_z = 0.90 Exposure C, z = 20 ft (top of parapet)

ASCE 7 Table 26.10-1

K_zt = 1.67 (given)

K_e = 1.0 (given)

K_d = 0.85

ASCE 7 Table 26.6-1

V = 142 mph (given)

\[q_p = 0.00256 \times 0.90 \times 1.67 \times 0.85 \times 142^2 = 65.9 \text{ psf} \]

ASCE 7 Table 26.13-1

GC_pi = 0.00 (solid parapet, open building condition)

ASCE 7 Fig. 30.3-1

GC_p, h \leq 60 ft

Effective wind area

\[= \text{span length 4-ft height} \times \text{span 4 ft/3} = 16/3 = 5.3 \text{ ft}^2 < 10 \text{ ft}^2 \text{ Use 10 ft}^2 \]

Zone 4 wall positive pressure GC_p = +1.0 \times 0.90 = +0.90 (Ref footnote 5 for reduction)

Zone 4 wall negative pressure GC_p = – 1.1 \times 0.90 = – 0.99 (Ref footnote 5 for reduction)

Zone 2 roof negative pressure GC_p = – 2.3

ASCE 7 Fig. 30.3-2A
Solution 903, Lateral Forces—Bridges, p. 260
The following was adjusted under the Procedure 2 in the solution:

According to Table 3.4.1-1 for Extreme Event I:

\[1.0DC + 1.0EQ \]

The above equation requires combining seismic Load Cases 1 and 2 with the dead load forces as given in the problem statement.

DC = dead load axial force in column of Pier 2 = 664 kips (given)

According to Table 3.10.7.1-1, Art. 3.10.7.1, the response modification factor \(R \) for multiple column bents with an importance category of "Other" is 5. The \(R \) factor for column shear force is 1 per Art.3.10.9.4.3d. The seismic moments should be divided by \(R \) and combined with the dead load moments. The following table shows the modified elastic design moments.

Determine the maximum forces:

<table>
<thead>
<tr>
<th>Force</th>
<th>Load Case 1 1.0(DC) ± 1.0(EQ)</th>
<th>Load Case 2 1.0(DC) ± 1.0(EQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_L)</td>
<td>(1.0(0) + 1.0(810))</td>
<td>(1.0(0) + 1.0(243))</td>
</tr>
<tr>
<td>(V_T)</td>
<td>(1.0(21) + 1.0(243))</td>
<td>(1.0(21) + 1.0(810))</td>
</tr>
<tr>
<td>(P_{max})</td>
<td>(1.0(664) + 1.0(287))</td>
<td>(1.0(664) + 1.0(957))</td>
</tr>
<tr>
<td>(M_L)</td>
<td>(1.0(0) + 1.0(8,100/5))</td>
<td>(1.0(0) + 1.0(2,430/5))</td>
</tr>
<tr>
<td>(M_T)</td>
<td>(1.0(162) + 1.0(2,430/5))</td>
<td>(1.0(162) + 1.0(8,100/5))</td>
</tr>
</tbody>
</table>

The above table indicates that the combination for Load Case 2 governs.

\[M_u = \text{factored moment} = (486^2 + 1,782^2)^{1/2} = 1,847 \text{ ft-kips} \]

\[V_u = \text{factored shear} = (243^2 + 831^2)^{1/2} = 866 \text{ kips} \]

The summary of maximum design forces at the base of each column of Pier 2 is as follows:

\[M_u = 1,847 \text{ ft-kips} \]

\[V_u = 866 \text{ kips} \]

\[P_u = 1,621 \text{ kips} \]