Traffic and Safety Improvement at a Busy T-intersection

Introduction
T-intersection of two county roads (Main Street and Side Street) poses safety hazards and traffic delays. Situation is exacerbated by a heavily used trail 150 ft east of Main Street. An adjacent wetland also had to be accommodated in the design. A team of five civil engineering seniors worked under the mentorship of two county engineers (a PE and an EIT) and two faculty members (a PE and a PE-PLS) to improve the intersection.

Project Goal
Improve the Level of Service (LOS) of intersection and safety of pedestrians and trail users. Reduce adverse impacts to wetland.

Development and Evaluated Alternatives
1. Developed preliminary design for three options:
 - Roundabout
 - Three-way stop
 - Traffic signalization

2. Evaluated the three options and a no-build option based on seven factors & selected preferred alternative.

 - **Level of Service (LOS)**: Analyzed traffic using software, Synchro®, to ensure LOS ≥ C
 - **Cost**:
 - Right of Way (ROW) Acquisition
 - Used state bid tabs and historical bid prices to determine construction and maintenance cost.
 - **Environmental Impact**:
 - Analyzed potential vehicle-vehicle and vehicle-pedestrian conflict points to maximize safety
 - Pedestrian Safety: Analyzed driver-trail user interaction due to trail alignment
 - **Decision Matrix** (score 1 (weak); 5 (strong))
 - **Options**
 - Round About
 - Three-way stop
 - Traffic Signal
 - No Build
 - **Traffic Collision Reduction**
 - Non-motorized improvements
 - Traffic Operations
 - Construction cost
 - Maintenance cost
 - ROW Acquisition
 - Environmental Impact
 - **Total**

30% Design of Preferred Alternative - Traffic Signalization
1. Team performed traffic warrant analysis to confirm intersection merits traffic signal. Designed revised lane configurations and stormwater system. Prepared professional quality engineering drawings (some excerpts of drawings are shown below).

Public Health, Safety, Welfare Awareness
Improving driver, pedestrian and trail user safety and welfare was primary goal of project.

Preservation of wetland, and stormwater disposal brought awareness to public safety and welfare.

Knowledge and Skills Gained
- **Engineering & Technical Skills**
 - Developed working knowledge of several Federal, State and County design guidelines, codes, specifications.
 - Used a transportation engineering software and a drafting software.
 - Prepared students to enter the transportation engineering profession.

Professional Skills
- Developed Oral presentations to class, professional engineers on department advisory board, county & local professional society meeting.
- Honed technical writing skills through proposal, progress and final reports, and emails.
- Project management and leadership skills: prepared agenda, ran meetings, followed up on action items; managed schedules, budgets; learned to work as a team in-person and in virtual settings.

Cost
- **Construction Estimate** $1,426,000
- **Right-of-Way Acquisition** $112,000
- **Preliminary Engineering** $285,000
- **Construction Engineering** $214,000
- **Total Project Cost** $2,037,000

Team’s Approach
- Brainstorm design options
- Create optional design concepts
- Evaluate options
- Select preferred alternative and take it to 30% design

Results compiled into Decision Matrix

Two faculty members supervised team (a PE and a PE-PLS)

Team presented to Department Advisory Board members (8 PEs & a Scientist)

Two engineers from County mentor team (PE and EIT)

College-Industry Partners

Two engineers from Local engineering contest (5 PEs as judges)

County engineers, managers, construction personnel provided feedback on oral presentations: a drafter from the county provided guidance on preparing professional quality drawings.