ERRATA for

PE Civil Structural Practice Exam

ISBN 978-1-947801-20-2

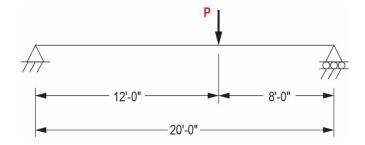
Copyright 2021 (July 2021 First Printing)

Errata posted 9/1/2023

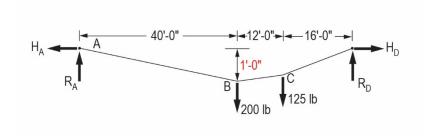
Revisions are shown in red.

Question 61, p. 44

The W10×22 steel beam ($F_y = 50$ ksi) shown in the figure is braced at unknown intervals.


Work either the ASD or the LRFD version of the question. Assume $c_b = 1.0$.

ASD


The allowable flexural strength (ft-kips) of the beam is most nearly:

LRFD

The design moment capacity ϕM_n (ft-kips) of the beam is most nearly:

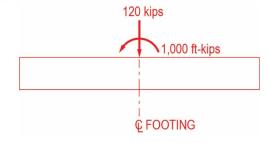
Solution 54, p. 84

ERRATA for

PE Civil Structural Practice Exam

ISBN 978-1-947801-20-2

Copyright 2021 (July 2021 First Printing)

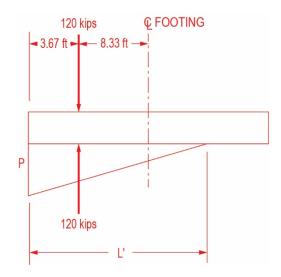

Errata posted 8/1/2023

Solution 70, p. 92

Weight of footing =
$$2.5 \text{ kips/ft}(24 \text{ ft}) = 60 \text{ kips}$$

$$+\uparrow\sum F_{v}=-80$$
 kips -60 kips $+20$ kips $=-120$ kips

$$+\sum M_{C} = -80 \text{ kips} (10 \text{ ft}) - 20 \text{ kips} (10 \text{ ft}) = -1,000 \text{ ft-kips}$$


$$e = \frac{1,000 \text{ ft-kips}}{120 \text{ kips}}$$

$$e = 8.33$$
 ft from G

$$\frac{L}{6} = \frac{24}{6} = 4 \text{ ft} < 8.33 \text{ ft}$$

Resultant not within kern

:. Footing not fully effective

Resultant of soil pressure must align with eccentric resultant load. L' is the effective length of the triangular soil pressure pattern.

ERRATA for

PE Civil Structural Practice Exam

ISBN 978-1-947801-20-2

Copyright 2021 (July 2021 First Printing)

Errata posted 8/1/2023

Solution 70, p. 92 (Continued)

$$\therefore 3.67 \text{ ft} = \frac{L'}{3} \to L' = 3(3.67 \text{ ft}) = 11.01 \text{ ft}$$

$$\frac{1}{2} P L' = \frac{1}{2} P(11.01 \text{ ft}) = 120 \text{ kips} \to P = \frac{2(120 \text{ kips})}{11.01 \text{ ft}} = 21.8 \text{ kips/ft}$$

$$P_{\text{max}} = \frac{P}{8 \text{ ft}} = \frac{21.8 \text{ kips/ft}}{8 \text{ ft}} = 2.72 \text{ kips/ft}^2$$

THE CORRECT ANSWER IS: C