Revisions are shown in red.

Question 67, p. 44

The illustration should be shown as follows:

Question 91, p. 59

The question should be shown as follows:

Yielding is considered failure for the ductile beam shown. The following data apply:

Yielding first occurs at Point X. $S_y = 34 \text{ ksi}$ $\sigma_2 = 0 \text{ ksi}$

The table below shows various calculated values for σ_1 and σ_3 .

Based on maximum shear stress theory, select the column(s) that show the values at which failures will occur.

Stress	Α	В	С	D	Ε	F
σ_1 (ksi)	35	24	45	60	18	82
σ3 (ksi)	- 35	0	-35	-24	-62	-62

Solution Table, p. 66

No. 91—A, C, D, E, F

Solution 12, p. 70 Pafer to the Intellectual Property section in the Ethics chapter of the *Eth*

Refer to the Intellectual Property section in the Ethics chapter of the FE Reference Handbook.

Shapes, colors, and visual features are protected by industrial design rights.

THE CORRECT ANSWER IS: D

Solution 46, p. 91

Refer to the Torsion section in the Mechanics of Materials chapter of the FE Reference Handbook.

The polar moment of inertia for a solid cylinder is

$$J = \frac{\pi r^4}{2} = \frac{\pi \left(\frac{d}{2}\right)^4}{2} = \frac{\pi d^4}{2(2)^4} = \frac{\pi d^4}{2(16)} = \frac{\pi d^4}{32}$$

The equation for the shear stress

$$\tau = \frac{Tr}{J} = \frac{T\left(\frac{d}{2}\right)}{J}$$

Substituting for polar inertia into the equation for the shear stress gives

$$\tau = \frac{Tr}{J} = \frac{T\left(\frac{d}{2}\right)}{\frac{\pi d^4}{32}} = \frac{16T}{\pi d^3}$$

Solving for torque gives

$$T = \frac{\pi d^3 \tau}{16} = \frac{\pi (0.2)^3 (840 \times 10^3)}{16}$$

 $T = 1,319 \text{ N} \cdot \text{m}$

THE CORRECT ANSWER IS: C

Solution 91, p. 112

The solution should read as follows:

Refer to the Static Loading Failure Theories section in the Mechanical Engineering chapter of the *FE Reference Handbook*.

Maximum shear stress theory is used for the ductile material. Note: $\sigma_1 \ge \sigma_2 \ge \sigma_3$

Calculate $\tau_{\text{max}} = (\sigma_1 - \sigma_3)/2$ and compare with $S_y/2$.

Stress	Α	В	С	D	Ε	F
Calculated τ_{max}	35	12	40	42	40	72
$\tau_{max} \ge 17 \ ksi$	fails	12–ok	fails	fails	fails	fails

THE CORRECT ANSWERS ARE: A, C, D, E, F

Solution 95, p. 114

Refer to the Hooke's Law section in the Mechanics of Materials chapter of the FE Reference Handbook.

The formula for the total longitudinal strain without a temperature rise is:

$$\varepsilon_{\text{axial}} = \frac{1}{E} \left(\sigma_l - v \left(\sigma_t + \sigma_r \right) \right) = \frac{1}{210 \times 10^3 \text{ MPa}} \left(23.1 \text{ MPa} - 0.24 \left(46.2 \text{ MPa} + 0 \right) \right) = 5.72 \times 10^{-5}$$

This must be converted to displacement using the following formula:

 $\varepsilon_{\text{axial}} = \frac{\delta l}{l}$, where *l* is the length of the section under consideration $\delta l = \varepsilon_{\text{axial}} \times l$ = 5.72 × 10⁻⁵ × 1,000 mm

= 0.0572 mm

THE CORRECT ANSWER IS: A

Solution 99, p. 117 The first line of the solution should read as follows:

Use the Failure by Pure Shear equation from the Joining Methods section in the Mechanical Engineering chapter of the *FE Reference Handbook*.