ERRATA for

PE Civil Water Resources and Environmental Practice Exam

ISBN: 978-1-947801-22-6 Copyright 2021 Errata posted 12/01/2023

Revisions are shown in red.

Exam Specifications, p. 4:

• The exam uses both the International System of units (SI) and the US Customary System (USCS).

Question 66, p. 46:

The primary clarifier of a trickling filter plant receives 1,000 lb of solids daily. The clarifier has a solids capture rate of 90% and produces an underflow sludge concentration of 9% (SG = 1.05). The volume of primary sludge (ft³/day) is most nearly:

- O A. 2
- O B. 80
- O C. 150
- O D. 210

Question 76, p. 50:

The illustration should read as follows:

Tank Design Parameters	System Requirements/Data
Maximum elevation	Fire-flow duration
	Chlorine residual
	Airport flight path
Minimum elevation	Service pressure
	Pump total discharge head (TDH)
Volume	Floodplain elevation
	Surface overflow rate

ERRATA for

PE Civil Water Resources and Environmental Practice Exam

ISBN: 978-1-947801-22-6 Copyright 2021 Errata posted 12/01/2023

Question 79, p. 52:

The illustration should read as follows:

Length of bars not to scale.

All concentrations are mg/L as CaCO₃.

Solution 53, p. 75:

Lines 2 and 6 should read as follows:

$$F_1 = \frac{V_1}{\sqrt{gy_1}} = \frac{50 \text{ ft/sec}}{\sqrt{(32.2 \text{ ft/sec}^2)(3.8 \text{ ft})}} = 4.52$$

$$F_2 = \frac{V_2}{\sqrt{gy_2}} = \frac{8.46 \text{ ft/sec}}{\sqrt{(32.2 \text{ ft/sec}^2)(22.46 \text{ ft})}} = 0.31$$

ERRATA for

PE Civil Water Resources and Environmental Practice Exam

ISBN: 978-1-947801-22-6 Copyright 2021 Errata posted 12/01/2023

Solution 66, p. 81:

Refer to the Sludge Production section in the PE Civil Reference Handbook.

Using equation
$$V_S = \frac{M}{P_S S_S g_w}$$

Use SG of sludge
$$= 1.05$$

$$M = 1,000 \text{ lb/day}(0.9) = 900 \text{ lb/day}$$

$$P_{\rm S} = 0.09$$

$$S_S = 1.05$$

$$g_w = 62.4 \text{ lb/ft}^3$$

$$V_S = \frac{900 \text{ lb/day}}{(0.09)(1.05)(62.4 \text{ lb/ft}^3)} = 152.6 \text{ lb/ft}^3$$

$$V_S = 153 \text{ lb/ft}^3$$

Round to tens digits = 150 lb/ft^3

Solution 76, p. 85:

The illustration should read as follows:

Tank Design Parameters

Maximum elevation

Airport flight path

Pump total discharge head (TDH)

Minimum elevation

Service pressure

Volume

Fire-flow duration

Chlorine residual