Revisions are shown in red.

Question 42, p. 36:
The question should read as follows:

The following circuit is proposed for measuring and displaying temperature. The required temperature range of the overall circuit is –100.1°C to 100.1°C with a required resolution of 0.1°C.

Solution 24, p. 80
The solution should read as follows:

\[f_{\text{max}} = 10 \text{ Hz} \quad V_{\text{peak}} = 5 \text{ V} \]
\[V_{\text{in}} = 5 \sin 62.8 \ t \]
\[\frac{dV}{dt} = 314 \cos 62.8 \ t \]
\[\frac{dV}{dt}{\bigg|_{\text{max}}} = \frac{dV}{dt}{\bigg|_{t=0}} = 314 \cos 62.8 \ t{\bigg|_{t=0}} = 0 \]
\[\frac{dV}{dt}{\bigg|_{\text{max}}} = 314 \]
\[\Delta V_{\text{max}} = \frac{dV}{dt}{\bigg|_{\text{max}}} \times 0.01 \]
\[\Delta V_{\text{max}} = (314) (0.01) = 3.14 \text{ V} \]

Solution 55, p. 88
The solution should read as follows:
The shorted stub should provide an input susceptance of –0.04 S. The normalized input admittance of the shorted stub is given by