ERRATA for

FE Chemical Practice Exam

ISBN: 978-1-947801-03-5 Copyright ©2020, 1st printing January 2020

Errata posted 10/01/2024

Revisions are shown in red.

Question 4, p. 11:

The technician first weighs out 10 g of solids using the analytical balance and dissolves them in 100 ml of water using the volumetric flask. Then the technician uses a pipette to draw out 1 ml, which is diluted to 100 ml using best laboratory practices. What is the number of significant figures of the molarity of the final solution?

Question 24, p. 20:

The balanced equation and molecular weights for reactants and products in the anaerobic digestion of an organic material are as follows:

 $C_{60}H_{95}O_{38}N + 18 H_2O \rightarrow 32 CH_4 + 28 CO_2 + NH_3$

Compound	MW
C ₆₀ H ₉₅ O ₃₈ N	1,437
H ₂ O	18
CH ₄	16
CO ₂	44
NH ₃	17

The weight (lb) of methane produced per 2,000 lb of organic material would be most nearly_____.

Question 35, p. 24:

O A. 160

O B. 250

O C. 300

O D. 420

Solution Table, p. 60:

Number 4 in the table should be C.

Number 24 in the table should be 712–713.

Solution 4, p. 62:

Volume = 100.1 ml, 4 significant figures

Weight = 100.1 g, 4 significant figures

Pipette = 1.01 ml, 3 significant figures

THE CORRECT ANSWER IS: C

ERRATA for

FE Chemical Practice Exam

ISBN: 978-1-947801-03-5

Copyright ©2020, 1st printing January 2020

Errata posted 10/01/2024

Solution 16, p. 67:

Refer to the Relationship Between Hardness and Tensile Strength section in the Materials Science/Structure of Matter chapter of the *FE Reference Handbook*.

By definition, a metal with high hardness has a high tensile and yield strength, as well as strong intermolecular bonding, with high impact, rebound, and scratch resistance strength.

THE CORRECT ANSWERS ARE: B, C, D, AND F Solution 17, p. 67:

Refer to the Corrosion section in the Materials Science/Structure of Matter chapter of the *FE Reference Handbook*. Aluminum is anodic relative to copper and therefore will corrode to protect the copper.

THE CORRECT ANSWER IS: B

Solution 24, p. 69:

$$\underbrace{\text{C}_{60}\text{H}_{95}\text{O}_{38}\text{N}}_{\textbf{1,437}} + 18\text{ H}_{2}\text{O} \rightarrow \underbrace{32\text{ CH}_{4}}_{(32)(16)=512} + 28\text{ CO}_{2} + \text{NH}_{3}$$

CH₄ lb = 2,000 lb
$$\left(\frac{512}{1,437}\right)$$
 = 712.6 lb

THE CORRECT ANSWER IS: 712-713

Solution 35, p. 73:

Refer to the P-h diagram for Refrigerant HFC-134a in the Thermodynamics chapter of the FE Reference Handbook.

The enthalpy at 0.1 quality and 20° C = 250 kJ/kg.

The enthalpy at saturated vapor and 20° C = 410 kJ/kg.

$$410 - 250 = 160 \text{ kJ/kg}$$

THE CORRECT ANSWER IS: A

ERRATA for

FE Chemical Practice Exam

ISBN: 978-1-947801-03-5

Copyright ©2020, 1st printing January 2020

Errata posted 10/01/2024

Solution 60, p. 85:

The Dimensionless Group equation (Sherwood) is given in the Chemical Engineering section of the *FE Reference Handbook*.

$$\frac{k_m D}{D_m} = 0.023 \left(\frac{DV\rho}{\mu}\right)^{0.8} \left(\frac{\mu}{\rho D_m}\right)^{1/3}$$

Using the definitions of the Reynolds and Schmidt numbers, the following form of the equation is obtained:

$$\frac{k_m D}{D_m} = 0.023 \text{ Re}^{0.8} \text{ Sc}^{1/3}$$

$$\frac{k_m D}{D_m} = 0.023(30,000)^{0.8} (6)^{1/3} = 159.52$$

$$k_m = 159.52 \frac{D_m}{D} = 159.52 \frac{1 \times 10^{-5} \frac{\text{cm}^2}{\text{s}}}{5 \text{ cm}} = 3.19 \times 10^{-4} \frac{\text{cm}}{\text{s}} = 3.19 \times 10^{-4} \frac{\text{mol}}{\text{cm}^2 \cdot \text{s} \cdot \frac{\text{mol}}{\text{cm}^3}}$$

Assume that liquid in contact with the surface of the tube is at equilibrium concentration.

Flux =
$$\frac{k_m}{(C_{\text{surface}} - C_{\text{bulk}})} = 3.19 \times 10^{-4} \frac{\text{mol}}{\text{cm}^2 \cdot \text{s} \cdot \frac{\text{mol}}{\text{cm}^3}} \left(2 \times 10^{-4} \frac{\text{mol}}{\text{cm}^3} - 0 \frac{\text{mol}}{\text{cm}^3} \right)$$

= $6.38 \times 10^{-8} \frac{\text{mol}}{\text{cm}^2 \cdot \text{s}} \left(\frac{100 \text{ cm}}{1 \text{ m}} \right)^2 = 6.38 \times 10^{-4} \text{ mol/(s} \cdot \text{m}^2)$

THE CORRECT ANSWER IS: A