ERRATA for PE Civil: Transportation Practice Exam ISBN: 978-1-947801-32-5 Copyright 2023 Errata posted 01/06/2025

Revisions are shown in red.

Question 26, p. 15:

PI station = 12+40.00Degree of curve (arc) = 10° Deflection angle = $12^{\circ}30'$

Question 43, p. 25:

A crest vertical curve originally designed to provide passing sight distance is experiencing drainage issues due to the high K value of the curve. If the two-lane, 50-mph design speed roadway is modified to provide only stopping sight distance, the decrease in length L (ft) of the curve is _____.

Question 58, p. 36:

Delineators are to be placed on the outside of a horizontal roadway curve of 5° (arc). The approximate spacing (ft) for the delineators along the curve is most nearly:

Solution 12, p. 54:

Reference: FHWA, Manual on Uniform Traffic Control Devices, 2009, Section 2B.12.

Solution 16, p. 56:

where

 v_p = pedestrian unit flow rate (p/ft/min) v_{15} = peak 15-min flow (p/h) W_E = effective walkway width (ft)

$$v_p = \frac{1,200}{15(6.5)} = \frac{1,200}{97.5} = 12.3$$

ERRATA for PE Civil: Transportation Practice Exam ISBN: 978-1-947801-32-5 Copyright 2023 Errata posted 01/06/2025

Solution 43, p. 68:

Stopping sight distance at 50 mph per Table 3-35 = 425 ft, K value = 84, which is under the typical drainage maximum of 167.

Solution 58, p. 73:

$$R = \frac{5,730}{D_{\rm a}} = \frac{5,730}{5} = 1,146 \text{ ft}$$

Solution 65, p. 75: Reference: AASHTO, *Mechanistic-Empirical Pavement Design Guide*, 2022, Table 9-8, p. 127.