Revisions are shown in red.

Question 37, p. 32

The options should read as follows:

Question 49, p. 38 The options should read as follows:

A. 2
B. 7
C. 9
D. 36

Question 53, p. 42

The question should read as follows:

A tubular-bowl centrifuge can be used to separate particles by diameter from a liquid feed stream containing particles of various diameters.

Assume the following relationship for particle cut-point diameter as a function of various parameters holds:

$$D_P = \sqrt{\frac{18 q \mu \left[\ln \left(\frac{r_2}{r_1} \right) \right]}{\omega^2 \pi b \left(\rho_P - \rho \right) \left(r_2^2 - r_1^2 \right)}}$$

where:

 $D_P = \text{particle cut-point diameter}$ q = volumetric flow rate of fluid $\mu = \text{fluid viscosity}$ $r_1 = \text{radius at time 0}$ $r_2 = \text{radius at time t}_T$ $\omega = \text{rotational velocity of bowl}$ b = bowl length $\rho_P = \text{particle density}$ $\rho = \text{fluid density}$

Match the change in particle cut-point diameter with each of the given changes in a separation parameter.

Question 56, p. 43

The question should read as follows:

An 80-ft-wide × 200-ft-long greenhouse with a semicircular (hoop or arch) cross section has a double-polyethylene (IR-inhibited) covering on the top, side, and ends. It also has a heating system with an output of 400,000 Btu/hr. For the double-polyethylene covering, R = 2.0 hr-ft²-°F/Btu. The temperature difference that can be maintained inside to outside in the greenhouse is most nearly:

Question 69, p. 50

The options should read as follows:

- \circ A. more than 40
- \circ B. between 21 and 40
- \circ C. between 13 and 20
- \circ D. less than 12

Solution Table, p. 62

The solution for 69 is **D**.

Solution 37, p. 78

The following was added to the solution:

From the graph, $D_{10} = 1.3$, $D_{30} = 3.1$, $D_{60} = 7.0$

$$C_{\rm u} = \frac{D_{60}}{D_{10}} = \frac{7.0}{1.3} = 5.4$$
$$C_{\rm c} = \frac{(D_{30})^2}{D_{60} \times D_{10}} = \frac{(3.1)^2}{7.0 \times 1.3} = 1.06$$

Solution 49, p. 86

The solution should read as follows:

Reference: General practice knowledge

$$\Delta T = 30^{\circ}\text{C or } 30 \text{ K}$$

$$Q = UA\Delta T$$

$$Q = 2,114 \text{ kJ/kg} \times 1,000 \text{ kg/hr}$$

$$Q = 2.11 \times 10^{6} \frac{\text{kJ}}{\text{hr}} \times \frac{\text{W} \cdot \text{sec}}{\text{J}} \times \frac{\text{hr}}{3,600 \text{ sec}} = 586 \text{ kW}$$

$$Q = 2,700 \text{ W/m}^{2} \cdot \text{K} \times 30 \text{ K} \times A$$

$$586 \text{ kW} = 2,700 \frac{\text{W}}{\text{m}^{2} \cdot \text{K}} \times 30 \text{ K} \times A$$

$$A = \frac{586 \text{ kW} \cdot \text{m}^{2} \cdot \text{K}}{2.7 \text{ kW} \times 30 \text{ K}}$$

$$A = 7.23 \text{ m}^{2}$$

THE CORRECT ANSWER IS: **B**

Solution 52, p. 88

The figure in the solution was modified as shown below:

Solution 53, p. 89

The solution should read as follows:

Changes in parameters present in the numerator (e.g., volumetric flow rate) result in proportional changes in particle cut-point diameter. Changes in parameters present in the denominator (e.g., density difference, which is a function of particle density and fluid density) result in inversely proportional changes in particle cut-point diameter. Changes in parameters absent from the equation (e.g., atmospheric pressure) have no influence on particle cut-point diameter.

Separation Parameter Change	
Fluid density increases	Increases
Particle density increases	Decreases
Atmospheric pressure decreases	Remains the same
Volumetric flow rate increases	Increases

Solution 56, p. 93

The following was added to the solution under "Rearranging":

Rearranging:

$$\Delta T = (T_o - T_i) = \frac{q}{UA}$$

$$q = 400,000 \frac{Btu}{hr}$$

$$A = \text{area of ends} + \text{area of top} = 2 \times \frac{\pi r^2}{2} + \frac{\pi DL}{2}$$

$$= 3.14 \times (40 \text{ ft})^2 + \frac{3.14 \times 80 \text{ ft} \times 200 \text{ ft}}{2} = 5,024 \text{ ft}^2 + 25,120 \text{ ft}^2 = 30,144 \text{ ft}^2$$

$$U = \frac{1}{R}$$

$$U = \frac{1}{2.0} = 0.50$$

$$U = 0.50 \frac{Btu}{hr - \text{ft}^2 - \text{°F}}$$

$$\Delta T = \frac{400,000 \frac{Btu}{hr}}{0.50 \frac{Btu}{hr - \text{ft}^2 - \text{°F}} \times 30,144 \text{ ft}^2} = 26.5^{\circ}\text{F}$$

Solution 65, p. 95

The variable *v* in the last section of the solution was changed to the following:

$$q_v = Mv$$

 $v = 0.835 \text{ m}^3/\text{kg}$ at 18°C and 60% (from psychrometric chart)
 $q_v = 1.3 \text{ kg/s} \times 0.83 \text{ m}^3/\text{kg} \times 60 \text{ s/min} = 66 \text{ m}^3/\text{min}$

Solution 69, p. 97 The solution should read as follows:

Reference: ASCE Minimum Design Loads for Buildings and Other Structures

Assumptions: Slippery roof Risk Category I Heated Exposure C $p_s = C_s p_f$ $p_f = 0.7 C_e C_t I_s p_g$

> C_e , exposure factor Category C that is fully exposed = 0.9 (from Table 7-2) C_t , thermal factor for heated structure = 1.0 (from Table 7-3) I_s , importance factor for agricultural building with low occupancy = 0.8 (from Table 1.5-2) C_s , warm roof slope factor = 1.0 (from Figure 7-2a)

 $p_f = (0.7)(0.9)(1.0)(0.8)(20) = 10.08 \text{ psf}$ $p_s = (1.0)10.08 \text{ psf} = 10.08 \text{ psf}$

THE CORRECT ANSWER IS: D

Solution 85, p. 111 The options should read as follows:

Reference: General practice knowledge

r = 1,800 mmcircumference = $\pi 2r = 11,309 \text{ mm}$

 $\frac{\pm 20 \text{ mm}}{11,309} \times 360^\circ = \pm 0.63^\circ \text{ total target zone}$

Need to have sensor $\pm 0.63^{\circ}$

From the options, the minimum resolution that will satisfy the requirements of minimum position accuracy is $\pm 0.5^{\circ}$.

Alternatively:

$$\theta = \sin^{-1} \left(\frac{20 \text{ mm}}{1,800 \text{ mm}} \right) \rightarrow \theta = 0.63^{\circ}$$