The civil exam is a breadth and depth examination. This means that examinees work the breadth (AM) exam and one of the five depth (PM) exams.

The five areas covered in the civil examination are construction, geotechnical, structural, transportation, and water resources and environmental. The breadth exam contains questions from all five areas of civil engineering. The depth exams focus more closely on a single area of practice in civil engineering.

Examinees work all questions in the morning session and all questions in the afternoon module they have chosen.

The exam is an 8-hour open-book exam. It contains 40 multiple-choice questions in the 4-hour AM session, and 40 multiple-choice questions in the 4-hour PM session.

The exam uses both the International System of Units (SI) and the US Customary System (USCS).

The exam is developed with questions that will require a variety of approaches and methodologies, including design, analysis, and application. Some problems may require knowledge of engineering economics.

The knowledge areas specified as examples of kinds of knowledge are not exclusive or exhaustive categories.

The specifications for the AM exam and the Structural PM exam are included here. The design standards applicable to the Structural PM exam are shown on the last page.

CIVIL BREADTH Exam Specifications

<table>
<thead>
<tr>
<th>Approximate Number of Questions</th>
<th>I. Project Planning</th>
<th>II. Means and Methods</th>
<th>III. Soil Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A. Quantity take-off methods</td>
<td>A. Construction loads</td>
<td>A. Lateral earth pressure</td>
</tr>
<tr>
<td></td>
<td>B. Cost estimating</td>
<td>B. Construction methods</td>
<td>B. Soil consolidation</td>
</tr>
<tr>
<td></td>
<td>C. Project schedules</td>
<td>C. Temporary structures and facilities</td>
<td>C. Effective and total stresses</td>
</tr>
<tr>
<td></td>
<td>D. Activity identification and sequencing</td>
<td></td>
<td>D. Bearing capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Foundation settlement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. Slope stability</td>
</tr>
</tbody>
</table>

1
IV. **Structural Mechanics** 6
 A. Dead and live loads
 B. Trusses
 C. Bending (e.g., moments and stresses)
 D. Shear (e.g., forces and stresses)
 E. Axial (e.g., forces and stresses)
 F. Combined stresses
 G. Deflection
 H. Beams
 I. Columns
 J. Slabs
 K. Footings
 L. Retaining walls

V. **Hydraulics and Hydrology** 7
 A. Open-channel flow
 B. Stormwater collection and drainage (e.g., culvert, stormwater inlets, gutter flow, street flow, storm sewer pipes)
 C. Storm characteristics (e.g., storm frequency, rainfall measurement and distribution)
 D. Runoff analysis (e.g., Rational and SCS/NRCS methods, hydrographic application, runoff time of concentration)
 E. Detention/retention ponds
 F. Pressure conduit (e.g., single pipe, force mains, Hazen-Williams, Darcy-Weisbach, major and minor losses)
 G. Energy and/or continuity equation (e.g., Bernoulli)

VI. **Geometrics** 3
 A. Basic circular curve elements (e.g., middle ordinate, length, chord, radius)
 B. Basic vertical curve elements
 C. Traffic volume (e.g., vehicle mix, flow, and speed)

VII. **Materials** 6
 A. Soil classification and boring log interpretation
 B. Soil properties (e.g., strength, permeability, compressibility, phase relationships)
 C. Concrete (e.g., nonreinforced, reinforced)
 D. Structural steel
 E. Material test methods and specification conformance
 F. Compaction

VIII. **Site Development** 5
 A. Excavation and embankment (e.g., cut and fill)
 B. Construction site layout and control
 C. Temporary and permanent soil erosion and sediment control (e.g., construction erosion control and permits, sediment transport, channel/outlet protection)
 D. Impact of construction on adjacent facilities
 E. Safety (e.g., construction, roadside, work zone)
I. Analysis of Structures 14
 A. Loads and load applications 4
 1. Dead loads
 2. Live loads
 3. Construction loads
 4. Wind loads
 5. Seismic loads
 6. Moving loads (e.g., vehicular, cranes)
 7. Snow, rain, ice
 8. Impact loads
 9. Earth pressure and surcharge loads
 10. Load paths (e.g., lateral and vertical)
 11. Load combinations
 12. Tributary areas
 B. Forces and load effects 10
 1. Diagrams (e.g., shear and moment)
 2. Axial (e.g., tension and compression)
 3. Shear
 4. Flexure
 5. Deflection
 6. Special topics (e.g., torsion, buckling, fatigue, progressive collapse, thermal deformation, bearing)

II. Design and Details of Structures 20
 A. Materials and material properties 5
 1. Concrete (e.g., plain, reinforced, cast-in-place, precast, pre-tensioned, post-tensioned)
 2. Steel (e.g., structural, reinforcing, cold-formed)
 3. Timber
 4. Masonry (e.g., brick veneer, CMU)
 B. Component design and detailing 15
 1. Horizontal members (e.g., beams, slabs, diaphragms)
 2. Vertical members (e.g., columns, bearing walls, shear walls)
 3. Systems (e.g., trusses, braces, frames, composite construction)
 4. Connections (e.g., bearing, bolted, welded, embedded, anchored)
 5. Foundations (e.g., retaining walls, footings, combined footings, slabs, mats, piers, piles, caissons, drilled shafts)
III. Codes and Construction

A. Codes, standards, and guidance documents
 1. International Building Code (IBC)
 2. American Concrete Institute (ACI 318, 530)
 3. Precast/Prestressed Concrete Institute (PCI Design Handbook)
 4. Steel Construction Manual (AISC)
 6. LRFD Bridge Design Specifications (AASHTO)
 7. Minimum Design Loads for Buildings and Other Structures (ASCE 7)
 8. American Welding Society (AWS D1.1, D1.2, and D1.4)
 9. OSHA 1910 General Industry and OSHA 1926 Construction Safety Standards

B. Temporary structures and other topics
 1. Special inspections
 2. Submittals
 3. Formwork
 4. Falsework and scaffolding
 5. Shoring and reshoring
 6. Concrete maturity and early strength evaluation
 7. Bracing
 8. Anchorage
 9. OSHA regulations
 10. Safety management
These standards apply to the Structural afternoon module of the PE Civil exam.

Effective Beginning with the April 2019 Examinations

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>DESIGN STANDARD TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>AASHTO LRFD Bridge Design Specifications, 7th edition (without interims), American Association of State Highway & Transportation Officials, Washington, DC.</td>
</tr>
<tr>
<td>ASCE 7</td>
<td>Minimum Design Loads for Buildings and Other Structures, 3rd printing, 2010, American Society of Civil Engineers, Reston, VA.</td>
</tr>
<tr>
<td>ACI 318</td>
<td>Building Code Requirements for Structural Concrete, 2014, American Concrete Institute, Farmington Hills, MI.</td>
</tr>
<tr>
<td>OSHA CFR 29</td>
<td>General Industry regulations and Construction regulations, 2016 Occupational Safety and Health Standards</td>
</tr>
<tr>
<td></td>
<td>Subpart A, General, 1910.1–1910.9, with Appendix A to 1910.7</td>
</tr>
<tr>
<td></td>
<td>Subpart D, Walking-Working Surfaces, 1910.21–1910.30</td>
</tr>
<tr>
<td></td>
<td>Subpart E, Personal Protective and Life Saving Equipment, 1926.95–1926.107.</td>
</tr>
<tr>
<td></td>
<td>Subpart M, Fall Protection, 1926.500–1926.503, Appendix A–Appendix E.</td>
</tr>
<tr>
<td></td>
<td>Subpart Q, Concrete and Masonry Construction, 1926.700–1926.706, with Appendix A.</td>
</tr>
<tr>
<td></td>
<td>Subpart R, Steel Erection, 1926.750–1926.761, with Appendix A–Appendix H.</td>
</tr>
<tr>
<td>PCI</td>
<td>PCI Design Handbook: Precast and Prestressed Concrete, 7th edition, 2010, Precast/Prestressed Concrete Institute, Chicago, IL.</td>
</tr>
</tbody>
</table>
Notes
1. Solutions to exam questions that reference a standard of practice are scored based on this list. Solutions based on other editions or standards will not receive credit. All questions use the US Customary System (USCS) of units.
2. Examinees will use only the Allowable Stress Design (ASD) method for wood design.
3. Formerly also called ACI 530. Examinees will use only the ASD method, except strength design Section 9.3.5 may be used for walls with out-of-plane loads.