

NCEES Principles and Practice of Engineering Examination CONTROL SYSTEMS Exam Specifications

Effective beginning with the October 2019 Examinations

- The exam is an 8-hour open-book exam. It contains 40 multiple-choice questions in the 4-hour morning session, and 40 multiple-choice questions in the 4-hour afternoon session. Examinee works all questions.
- The exam uses both the International System of units (SI) and the US Customary System (USCS).
- The exam is developed with questions that will require a variety of approaches and methodologies, including design, analysis, and application.
- The knowledge areas specified as examples of kinds of knowledge are not exclusive or exhaustive categories.

		Approximate Number of Questions
I.	Measurement	20
	A. Sensors	10
	1. Sensor technologies applicable to general measurement (e.g., flow, press	ure,
	level, temperature, counters, motion)	
	2. Sensor technologies applicable to general analytical instruments and sam	ipling
	systems (e.g., pH, ORP, density, O ₂ , conductivity, effects of sampling sys	tems, GC)
	3. Sensor technologies applicable to fire and gas detection	
	4. Sensor technologies applicable to machinery monitoring and protection (e.g.,
	vibration, bearing temperature, lube oil pressures, thrust, speed)	
	5. Sensor characteristics (e.g., rangeability, accuracy and precision, tempera	
	effects, response times, reliability, repeatability, maintenance, calibration	
	6. Sensor selection (e.g., plugging service, process severity, environmental e	effects
	and constraints, costs)	
	7. Material compatibility	
	8. Installation details (e.g., process, pneumatic, electrical, location, mainter	lance,
	calibration)	
	B. Flow, Level, and Pressure Calculations	8
	1. Flow (e.g., element sizing, pressure-temperature compensation, mass/vo	lume)
	2. Level	
	3. Pressure drop	
	C. General Calculations	2
	1. Unit conversions	
	2. Velocity	
	3. Square root extraction and interpolation	h /
	4. Variables involved in wake frequency calculations (e.g., thermowell lengt	n/
	diameter, velocity, natural frequency, wake frequency)	

II. Control Systems

- A. Drawings
 - 1. Drawings (e.g., process flow diagrams, P&IDs, loop diagrams, ladder diagrams, logic drawings, cause and effects drawings, electrical drawings, schematics, wiring diagrams)
- B. Theory
 - 1. Basic control of processes (e.g., pumps, compression, combustion, evaporation, distillation, hydraulics, reaction, dehydration, heat exchangers, crystallization, filtration, refrigeration, fluidization)
 - 2. Process dynamics (e.g., loop response, pressure-volume-temperature relationships, simulations)
 - 3. Basic control (e.g., regulatory control, feedback, feedforward, cascade, ratio, PID, split-range, gap control)
 - 4. Discrete control (e.g., relay logic, Boolean algebra, aliasing)
 - 5. Sequential control (e.g., batch, assembly, conveying, CNC, state machine, sequential function chart)
- C. Implementation
 - 1. HMI (e.g., graphics, alarm management, trending, historical data, operator panels)
 - 2. Equipment layout (e.g., human factors engineering, physical control room arrangement, panel layout)
 - 3. Limited variability programming languages for DCS and PLC (e.g., IEC 61131-3 languages/ladder diagrams, function blocks, sequential function charts, structured text, instruction list)
 - 4. System design comparisons and compatibilities (e.g., advantages and disadvantages of system architecture, distributed architecture, remote I/O, buses, wireless)
 - 5. Installation requirements (e.g., shielding, constructability, I/O termination, environmental, heat load calculations, power load requirements, purging, lighting, maintainability)
 - 6. System testing (e.g., factory acceptance test, integrated system test, site acceptance test)
 - 7. Commissioning (e.g., performance tuning, loop checkout)
 - 8. Performance evaluation (e.g., troubleshooting, root cause failure analysis and correction)
- D. Security of Industrial Automation and Control Systems
 - 1. Security (e.g., physical, cyber, network, firewalls, routers, switches, protocols, hubs, segregation, access controls)
 - 2. Security lifecycle (e.g., assessment, controls, audit, management of change)
 - 3. Requirements for a security management system
 - 4. Security risk assessment and system design
 - 5. Product development and requirements
 - 6. Verification of security levels (e.g., level 1, level 2)

7

8

2

III. Final Control Elements

A. Valves

- 1. Types (e.g., globe, ball, butterfly)
- 2. Trim characteristics (e.g., linear, low noise, equal percentage, seat leakage class)
- 3. Calculation (e.g., sizing, split range, noise, actuator, response time, pressure drop, air/gas consumption)
- 4. Selection of motive power and failure mode (e.g., hydraulic, pneumatic, electric, spring)
- 5. Applications of fluid dynamics (e.g., cavitation, flashing, choked flow, Joule-Thompson effects, two-phase)
- 6. Material selection based on process characteristics (e.g., erosion, corrosion, plug, extreme pressure, temperature, material compatibility)
- 7. Accessories (e.g., limit switches, solenoid valves, positioners, transducers, air regulators, servo amp, boosters, quick exhaust)
- 8. Environmental constraints (e.g., fugitive emissions, packing, special sealing, fire rating)
- 9. Installation practices (e.g., vertical, horizontal, bypasses, location, flow direction)
- B. Pressure Relieving Devices
 - 1. Pressure relieving valve types (e.g., conventional spring, balanced bellows, pilot operated)
 - 2. Pressure relieving valve characteristics (e.g., modulating, pop action)
 - 3. Pressure relieving valve calculations (e.g., sizing considering inlet pressure drop, back pressure, multiple valves)
 - 4. Material selection based on process characteristics
 - 5. Pressure relieving valve installation practices (e.g., linking valves, sparing the valves, accessibility for testing, car sealing inlet valves, piping installation, combination devices)
 - 6. Rupture discs and buckling pin valves (e.g., types, characteristics, application, calculations)
- C. Motor Controls
 - 1. Types (e.g., motor starters, variable-speed drives)
 - 2. Applications (e.g., speed control, soft starters, motor-operated valve actuators)
 - 3. Calculations (e.g., sizing, tuning, location)
 - 4. Accessories (e.g., encoders, positioners, relays, limit switches)
- D. Other Final Control Elements
 - 1. Motion (e.g., damper controls, types, orientation, actuators, servos, encoders)
 - 2. Solenoid valves (e.g., types, sizing)
 - 3. On-off devices/relays (e.g., types, applications, energize and de-energize to trip)
 - 4. Self-regulating devices (e.g., types, sizing, pressure, temperature, level, and flow regulators)

3

3

	Signals	1:
	 Pneumatic, electronic, optical, hydraulic, digital, analog, buses, wireless, thermocouple 	
	2. Transducers (e.g., analog/digital [A/D], digital/analog [D/A], current/ pneumatic [I/P] conversion, current/current [I/I], splitters, filters)	
	3. Hazardous area classification and instrument installation techniques (e.g., intrinsically safe [IS] barriers, cabinet purges, non-incendive)	
	4. Grounding, shielding, segregation, electromagnetic interference	
	5. Basic signal circuit design (e.g., two-wire, four-wire, isolated outputs, loop powering, buses)	
	6. Circuit calculations (voltage, current, impedance, power)	
	7. Unit conversion calculations	
В.	Transmission	
	1. Different communication systems architecture and protocols (e.g., fiber optics, coaxial cable, wireless, paired conductors, buses, transmission control protocol/internet protocol [TCP/IP], OPC)	
	2. Distance considerations versus transmission medium (e.g., data rates, sample rates)	
C.	Networking	
	1. Routers, bridges, switches, firewalls, gateways, network loading, error checking, bandwidth, crosstalk, parity, hubs	
Sa	fety Systems	1
	Documentation	
	 Documentation 1. Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection 	
A.	 Documentation Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection report, SIL verification report, safety lifecycle plan) 	
A.	 Documentation 1. Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection 	
A.	 Documentation 1. Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection report, SIL verification report, safety lifecycle plan) Theory 1. Reliability and availability (e.g., bathtub curve, failure rates types, voting, proof 	
А. В.	 Documentation 1. Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection report, SIL verification report, safety lifecycle plan) Theory 1. Reliability and availability (e.g., bathtub curve, failure rates types, voting, proof test intervals, common cause and diversity) 	
А. В.	 Documentation 1. Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection report, SIL verification report, safety lifecycle plan) Theory 1. Reliability and availability (e.g., bathtub curve, failure rates types, voting, proof test intervals, common cause and diversity) 2. SIL selection (e.g., safety layer matrix, risk graph, LOPA) 	
А. В.	 Documentation 1. Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection report, SIL verification report, safety lifecycle plan) Theory 1. Reliability and availability (e.g., bathtub curve, failure rates types, voting, proof test intervals, common cause and diversity) 2. SIL selection (e.g., safety layer matrix, risk graph, LOPA) Implementation 1. Safety system design (e.g., SRS, I/O assignments, redundancy, segregation, 	
А. В.	 Documentation 1. Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection report, SIL verification report, safety lifecycle plan) Theory 1. Reliability and availability (e.g., bathtub curve, failure rates types, voting, proof test intervals, common cause and diversity) 2. SIL selection (e.g., safety layer matrix, risk graph, LOPA) Implementation 1. Safety system design (e.g., SRS, I/O assignments, redundancy, segregation, logic design, failure direction) 2. SIL verification calculations (e.g., failure rates types, voting, proof test intervals, 	
А. В.	 Documentation Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection report, SIL verification report, safety lifecycle plan) Theory Reliability and availability (e.g., bathtub curve, failure rates types, voting, proof test intervals, common cause and diversity) SIL selection (e.g., safety layer matrix, risk graph, LOPA) Implementation Safety system design (e.g., SRS, I/O assignments, redundancy, segregation, logic design, failure direction) SIL verification calculations (e.g., failure rates types, voting, proof test intervals, common cause and diversity) Installation, commissioning, and validation (e.g., methods, procedures, test 	
А. В.	 Documentation 1. Basic documentation required (e.g., process hazards analysis, safety requirements specification [SRS], logic diagrams/narratives, test procedures, SIL selection report, SIL verification report, safety lifecycle plan) Theory 1. Reliability and availability (e.g., bathtub curve, failure rates types, voting, proof test intervals, common cause and diversity) 2. SIL selection (e.g., safety layer matrix, risk graph, LOPA) Implementation 1. Safety system design (e.g., SRS, I/O assignments, redundancy, segregation, logic design, failure direction) 2. SIL verification calculations (e.g., failure rates types, voting, proof test intervals, common cause and diversity) 3. Installation, commissioning, and validation (e.g., methods, procedures, test records) 	