FE Civil Practice Exam
ISBN: 978-1-932613-81-0
Copyright 2017
Errata posted 7/11/2019

Revisions are shown in red.

Solution 97, p. 107:

97. Use Law of Cosines

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{480^2 + 720^2 - 390^2}{2(480)(720)}$$

Previously posted errata continued on next page

FE Civil Practice Exam

ISBN: 978-1-932613-81-0 Copyright 2017 Errata posted 11/9/2018

Revisions are shown in red.

Question 42, p. 33:

The following preliminary concrete mix has been designed assuming that the aggregates are in oven-dry condition. However, the aggregates used are in SSD condition.

Water = 305 lb/yd^3 Cement = 693 lb/yd^3 Coarse aggregate (SSD) = $1,674 \text{ lb/yd}^3$ Fine aggregate (SSD) = $1,100 \text{ lb/yd}^3$

The properties of the aggregates are:

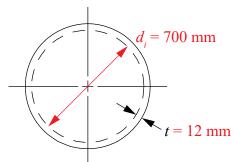
Property	Coarse Aggregate	Fine Aggregate
Absorption (moisture content at SSD) Moisture content as used in mix design	0.5% 2.0%	0.7% 6.0%
(oven-dry condition)	2.076	0.076

The amount of water (lb/yd³) that would be used in the final mix is most nearly:

- O A. 206
- O B. 222
- O C. 305
- O D. 388

FE Civil Practice Exam

ISBN: 978-1-932613-81-0 Copyright 2017 Errata posted 11/9/2018


Solution 34, p. 84:

Refer to Cylindrical Pressure Vessel in the Mechanics of Materials section of the FE Reference Handbook.

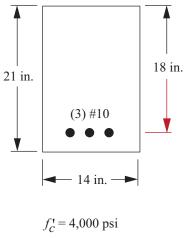
The cylinder can be considered thin-walled if $\frac{t}{\frac{d_i}{2}} \le 0.10$. In this case, t = 12 mm and $d_i = 700$ mm.

Since $\frac{t}{\frac{d_i}{2}} = \frac{12}{350} = 0.034$ which is ≤ 0.10 , the pipe is thin-walled.

Thus
$$\sigma_t = \frac{P_i r}{t}$$

where $r = \frac{r_i + r_o}{2} = \frac{350 + 362}{2} = 356 \text{ mm}$
 $\sigma_t = \frac{(1.680 \text{ MPa})(356 \text{ mm})}{12 \text{ mm}} = 49.8 \text{ MPa}$

THE CORRECT ANSWER IS: B


FE Civil Practice Exam ISBN: 978-1-932613-81-0

Copyright 2017 Errata posted 3/28/2018

Revisions are shown in red.

Question 67, p. 50:

The figure should appear as follows:

$$f_v = 60 \text{ ksi}$$

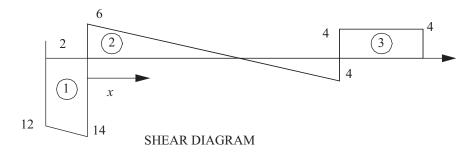
Question 89, p. 62:

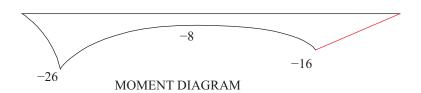
Question 89 has been replaced by the following:

Typically, groundwater is likely to contain high concentrations of:

- O A. particles measured as turbidity
- O B. microorganisms
- O C. calcium hardness
- O D. algae

THE CORRECT ANSWER IS: C

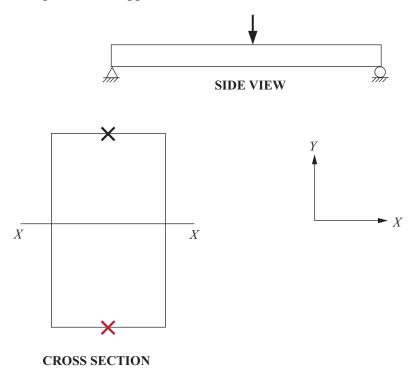

FE Civil Practice Exam


ISBN: 978-1-932613-81-0 Copyright 2017

Errata posted 3/28/2018

Solution 33, p. 83:

The figure should appear as follows:



FE Civil Practice Exam ISBN: 978-1-932613-81-0

Copyright 2017 Errata posted 3/28/2018

Solution 64, p. 96:

The figure should appear as follows:

Solution 89, p. 105:

The solution should read as follows:

Calcium and other ions dissolve as precipitation percolates through soil, resulting in high concentrations in groundwater.

Previously posted errata continued on next page

FE Civil Practice Exam
ISBN: 978-1-932613-81-0
Copyright 2017
Errata posted 4/18/2017

Revisions are shown in red.

Question 73, p. 54:

The second sentence should read as follows:

The Rankine passive force (lb/ft) possible on the wall is most nearly:

Solution 73, p. 100:

The correct answer is 27,000 lb/ft.