

## Fundamentals of Engineering (FE) ELECTRICAL AND COMPUTER CBT Exam Specifications

## Effective Beginning with the July 2020 Examinations

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 questions. The 6-hour time also includes a tutorial and an optional scheduled break.

Number of Questions

• The FE exam uses both the International System of Units (SI) and the U.S. Customary System (USCS).

## Knowledge

## 1. **Mathematics** 11-17 A. Algebra and trigonometry B. Complex numbers C. Discrete mathematics D. Analytic geometry E. Calculus (e.g., differential, integral, single-variable, multivariable) F. Ordinary differential equations G. Linear algebra H. Vector analysis 2. **Probability and Statistics** 4 - 6A. Measures of central tendencies and dispersions (e.g., mean, mode, standard deviation) B. Probability distributions (e.g., discrete, continuous, normal, binomial, conditional probability) C. Expected value (weighted average) **Ethics and Professional Practice** 3. 4 - 6A. Codes of ethics (e.g., professional and technical societies, NCEES Model Law and *Model Rules*) B. Intellectual property (e.g., copyright, trade secrets, patents, trademarks) C. Safety (e.g., grounding, material safety data, PPE, radiation protection) 4. **Engineering Economics** 5-8 A. Time value of money (e.g., present value, future value, annuities) B. Cost estimation C. Risk identification

D. Analysis (e.g., cost-benefit, trade-off, break-even)

| 5.  | Properties of Electrical Materials                                                   | 4–6   |
|-----|--------------------------------------------------------------------------------------|-------|
|     | A. Semiconductor materials (e.g., tunneling, diffusion/drift current, energy         |       |
|     | bands, doping bands, p-n theory)                                                     |       |
|     | B. Electrical (e.g., conductivity, resistivity, permittivity, magnetic permeability, |       |
|     | noise)                                                                               |       |
|     | C. Thermal (e.g., conductivity, expansion)                                           |       |
| 6.  | Circuit Analysis (DC and AC Steady State)                                            | 11–17 |
|     | A. KCL, KVL                                                                          |       |
|     | B. Series/parallel equivalent circuits                                               |       |
|     | C. Thevenin and Norton theorems                                                      |       |
|     | D. Node and loop analysis                                                            |       |
|     | E. Waveform analysis (e.g., KWS, average, frequency, phase, wavefength)              |       |
|     | r. Filasols                                                                          |       |
|     | G. Impedance                                                                         |       |
| 7.  | Linear Systems                                                                       | 5–8   |
|     | A. Frequency/transient response                                                      |       |
|     | B. Resonance                                                                         |       |
|     | C. Laplace transforms                                                                |       |
|     | D. Transfer functions                                                                |       |
| 8.  | Signal Processing                                                                    | 5–8   |
|     | A. Sampling (e.g., aliasing, Nyquist theorem)                                        |       |
|     | B. Analog filters                                                                    |       |
|     | C. Digital filters (e.g., difference equations, Z-transforms)                        |       |
| 9.  | Electronics                                                                          | 7–11  |
|     | A. Models, biasing, and performance of discrete devices (e.g., diodes,               |       |
|     | transistors, thyristors)                                                             |       |
|     | B. Amplifiers (e.g., single-stage/common emitter, differential, biasing)             |       |
|     | C. Operational amplifiers (e.g., ideal, nonideal)                                    |       |
|     | D. Instrumentation (e.g., measurements, data acquisition, transducers)               |       |
|     | E. Power electronics (e.g., rectifiers, inverters, converters)                       |       |
| 10. | Power Systems                                                                        | 8–12  |
|     | A. Power theory (e.g., power factor, single and three phase, voltage regulation)     |       |
|     | B. Transmission and distribution (e.g., real and reactive losses, efficiency,        |       |
|     | voltage drop, delta and wye connections)                                             |       |
|     | C. Transformers (e.g., single-phase and three-phase connections,                     |       |
|     | reflected impedance)                                                                 |       |
|     | D. Motors and generators (e.g., synchronous, induction, dc)                          |       |
| 11. | Electromagnetics                                                                     | 4–6   |
|     | A. Electrostatics/magnetostatics (e.g., spatial relationships, vector analysis)      |       |
|     | B. Electrodynamics (e.g., Maxwell equations, wave propagation)                       |       |
|     | C. Transmission lines (high frequency)                                               |       |

| 12. | <ul><li>Control Systems</li><li>A. Block diagrams (e.g. feedforward, feedback)</li><li>B. Bode plots</li><li>C. Closed-loop response, open-loop response, and stability</li></ul>                                                                                                                                                                                                                                                                                                             | 6–9  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 13. | <ul> <li>D. Controller performance (e.g., steady-state errors, settling time, overshoot)</li> <li>Communications</li> <li>A. Basic modulation/demodulation concepts (e.g., AM, FM, PCM)</li> <li>B. Fourier transforms/Fourier series</li> <li>C. Multiplexing (e.g., time division, frequency division, code division)</li> <li>D. Digital communications</li> </ul>                                                                                                                         | 5–8  |
| 14. | <ul> <li>Computer Networks</li> <li>A. Routing and switching</li> <li>B. Network topologies (e.g., mesh, ring, star)</li> <li>C. Network types (e.g., LAN, WAN, internet)</li> <li>D. Network models (e.g., OSI, TCP/IP)</li> <li>E. Network intrusion detection and prevention (e.g., firewalls, endpoint detection, network detection)</li> <li>F. Security (e.g., port scanning, network vulnerability testing, web vulnerability testing, penetration testing, security triad)</li> </ul> | 4–6  |
| 15. | <ul> <li>Digital Systems</li> <li>A. Number systems</li> <li>B. Boolean logic</li> <li>C. Logic gates and circuits</li> <li>D. Logic minimization (e.g., SOP, POS, Karnaugh maps)</li> <li>E. Flip-flops and counters</li> <li>F. Programmable logic devices and gate arrays</li> <li>G. State machine design</li> <li>H. Timing (e.g., diagrams, asynchronous inputs, race conditions and other hazards)</li> </ul>                                                                          | 8–12 |
| 16. | <ul><li>Computer Systems</li><li>A. Microprocessors</li><li>B. Memory technology and systems</li><li>C. Interfacing</li></ul>                                                                                                                                                                                                                                                                                                                                                                 | 5–8  |
| 17. | <ul> <li>Software Engineering</li> <li>A. Algorithms (e.g., sorting, searching, complexity, big-O)</li> <li>B. Data structures (e.g., lists, trees, vectors, structures, arrays)</li> <li>C. Software implementation (e.g., iteration, conditionals, recursion, control flow, scripting, testing)</li> </ul>                                                                                                                                                                                  | 4–6  |