ERRATA for FE Electrical and Computer Practice Exam ISBN: 978-1-932613-82-7 Copyright 2017 Errata posted 11/8/2018

Revisions are shown in red.

Solution 75, p. 112:

Solution 75 should read as follows:

From the given array, this is a fourth-order system. The denominator of the system is of the form:

 $a_4s^4 + a_3s^3 + a_2s^2 + a_1s + a_0$

The Routh array is formed by:

<i>s</i> ⁴	a_4	<i>a</i> ₂	a_0
<i>s</i> ³	<i>a</i> ₃	a_1	
<i>s</i> ²	$\frac{a_3a_2-a_4a_1}{a_3}$	a_0	

Substituting from the given Routh array yields the denominator polynomial:

$$s^4 + 7s^3 + 12s^2 + (10 + 14K)s + 42K$$

THE CORRECT ANSWER IS: C

Previously posted errata continued on next page

ERRATA for FE Electrical and Computer Practice Exam ISBN: 978-1-932613-82-7 Copyright 2017 Errata posted 10/29/2018

Revisions are shown in red.

Question 40, p. 31:

The unlabeled circuit should be shown as follows:

Question 77, p. 61:

The two-sided magnitude spectrum of the modulated signal should be shown as follows:

ERRATA for FE Electrical and Computer Practice Exam ISBN: 978-1-932613-82-7 Copyright 2017 Errata posted 10/29/2018

Solution 40, p. 99:

The circuit in the frequency (phasor) domain should be shown as follows:

Previously posted errata continued on next page

ERRATA for FE Electrical and Computer Practice Exam ISBN: 978-1-932613-82-7 Copyright 2017 Errata posted 3/29/2018

Revisions are shown in red.

Question 47, p. 38:

The second sentence should read as follows:

If y(t) is the value of the convolution x(t) * h(t), the value of y(t) is most nearly:

Questions 55, p. 45:

The graph showing Collector-to-Emitter Voltage versus Collector Current has been deleted.

Question 60, p. 50:

Question 60 has been replaced with the following:

The armature circuit of a dc motor may be modeled as a voltage source in series with a resistor. The field of the motor is supplied by a shunt field winding as shown below:

For a particular field strength, the back emf v_b is directly proportional to the motor speed ω . In steady state, under a particular load, the current i_a is measured to be 12A when the speed is 850 rpm and i_f is 2A. With field current at 2 A, if the motor were started with no additional resistance in series with the armature, the initial current i_a (amperes) would be most nearly:

- O A. −12
- O B. 0
- 0 C. 12
- O D. 250

ERRATA for FE Electrical and Computer Practice Exam ISBN: 978-1-932613-82-7 Copyright 2017 Errata posted 3/29/2018

Solution 60, p. 106:

The solution should read as follows:

$$i_a = \frac{500 \text{ V}}{2 \Omega} = 250 \text{ A}$$

THE CORRECT ANSWER IS: D

Solution 83, p. 115:

A fully connected network requires N(N-1)/2 links or paths; thus N(N-1)/2 = 10 for five stations.