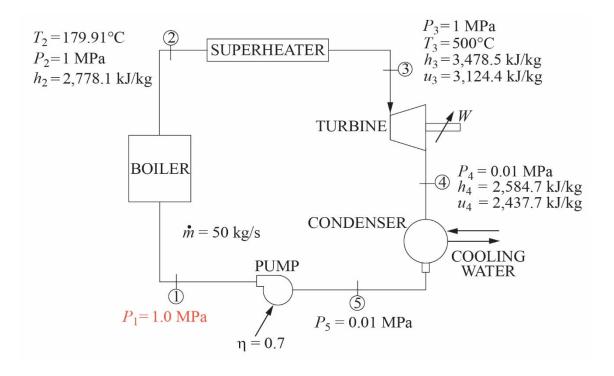
ERRATA for

FE Mechanical Practice Exam

ISBN: 978-1-932613-99-5


Copyright ©2020, 1st printing January 2020

Errata posted 02/02/2022

Revisions are shown in red.

Question 67, p. 44

The illustration should be shown as follows:

Solution 12, p. 70

Refer to the Intellectual Property section in the Ethics chapter of the FE Reference Handbook.

Shapes, colors, and visual features are protected by industrial design rights.

THE CORRECT ANSWER IS: D

ERRATA for

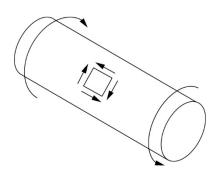
FE Mechanical Practice Exam

ISBN: 978-1-932613-99-5

Copyright ©2020, 1st printing January 2020

Errata posted 02/02/2022

Solution 46, p. 91


Refer to the Torsion section in the Mechanics of Materials chapter of the FE Reference Handbook.

The polar moment of inertia for a solid cylinder is

$$J = \frac{\pi r^4}{2} = \frac{\pi \left(\frac{d}{2}\right)^4}{2} = \frac{\pi d^4}{2(2)^4} = \frac{\pi d^4}{2(16)} = \frac{\pi d^4}{32}$$

$$\tau = \frac{Tr}{J} = \frac{T\left(\frac{d}{2}\right)}{J}$$

Substituting for polar inertia into the equation for the shear stress gives

$$\tau = \frac{Tr}{J} = \frac{T\left(\frac{d}{2}\right)}{\frac{\pi d^4}{32}} = \frac{16T}{\pi d^3}$$

Solving for torque gives

$$T = \frac{\pi d^3 \tau}{16} = \frac{\pi (0.2)^3 (840 \times 10^3)}{16}$$

$$T = 1,319 \text{ N} \cdot \text{m}$$

THE CORRECT ANSWER IS: C

ERRATA for

FE Mechanical Practice Exam

ISBN: 978-1-932613-99-5 Copyright ©2020, 1st printing January 2020 Errata posted 02/02/2022

Solution 95, p. 114

Refer to the Hooke's Law section in the Mechanics of Materials chapter of the FE Reference Handbook.

The formula for the total longitudinal strain without a temperature rise is:

$$\varepsilon_{\text{axial}} = \frac{1}{E} \left(\sigma_l - v \left(\sigma_t + \sigma_r \right) \right) = \frac{1}{210 \times 10^3 \text{ MPa}} \left(23.1 \text{ MPa} - 0.24 \left(46.2 \text{ MPa} + 0 \right) \right) = 5.72 \times 10^{-5}$$

This must be converted to displacement using the following formula:

$$\varepsilon_{\rm axial} = \frac{\delta l}{l}$$
, where l is the length of the section under consideration $\delta l = \varepsilon_{\rm axial} \times l$

$$= 5.72 \times 10^{-5} \times 1,000 \text{ mm}$$

$$= 0.0572 \text{ mm}$$

THE CORRECT ANSWER IS: A

Solution 99, p. 117

The first line of the solution should read as follows:

Use the Failure by Pure Shear equation from the Joining Methods section in the Mechanical Engineering chapter of the *FE Reference Handbook*.