ERRATA for FE Other Disciplines Practice Exam ISBN: 978-1-932613-86-5 Copyright 2017 Errata posted 7/11/2019

Revisions are shown in red.

Solution 29, p. 86:

29. The period is 2 sec: $2\Delta t$ by inspecting the graph.

THE CORRECT ANSWER IS: **B**

Previously posted errata continued on next page

ERRATA for FE Other Disciplines Practice Exam ISBN: 978-1-932613-86-5 Copyright 2017 Errata posted 3/28/2018

Question 56, p. 41:

The last sentence should read as follows:

The mass (g) of the bullet is most nearly:

Solution 100, p. 112:

Beginning with Line 7, the solution should read as follows:

When the tube-wall resistance is neglected, R_f can be calculated.

$\frac{1}{U_o} = \frac{A_o}{h_i A_i} + R_f + \frac{1}{h_o}$	$A_n = \pi D_n L$ $D_n = \text{tube diameter at } n$
$R_f = \frac{1}{A_o} - \frac{A_o}{A_o} - \frac{1}{A_o}$	L = tube length
$J U_o h_i A_i h_o$	
$R_{c} = \frac{1}{1} - \frac{\pi D_{o}L}{1} - \frac{1}{1}$	
$U_o h_i \pi D_i L h_o$	
$R_c = \frac{1}{D_o} - \frac{D_o}{D_o} - \frac{1}{D_o}$	
$U_o h_i D_i h_o$	
1 25 mm	1
$= \frac{1}{700 \text{ W/(m^2 \cdot K)}} - \frac{1}{\left[2,500 \text{ W/(m^2 \cdot K)}\right](19 \text{ mm})}$	$-\frac{1,500 \text{ W/(m^2 \cdot K)}}{1,500 \text{ W/(m^2 \cdot K)}}$
$= 0.00024 \text{ m}^2 \cdot \text{K/W}$	

THE CORRECT ANSWER IS: B

ERRATA for FE Other Disciplines Practice Exam ISBN: 978-1-932613-86-5 Copyright 2017 Errata posted 11/9/2018

Revisions are shown in red.

Solution 75, p. 103:

The solution should read as follows. A figure was added for clarification:

The mean pressure of the fluid acting on the gate is evaluated at the mean height, and the center of pressure is 2/3 of the height from the top (1/3 of the height measured up from the hinge). Although the mean pressure is determined at half the height of the gate (i.e., 1.5 m), the hydrostatic pressure varies linearly from D at the surface, to a maximum value at the bottom (hinge location). This results in the center of pressure being located 1/3 of the distance from the base of the triangular pressure distribution graph to the apex (at the fluid surface). The total force of the fluid is:

Previously posted errata continued on next page

ERRATA for FE Other Disciplines Practice Exam ISBN: 978-1-932613-86-5 Copyright 2017 Errata posted 3/28/2018

Question 56, p. 41:

The last sentence should read as follows:

The mass (g) of the bullet is most nearly:

Solution 100, p. 112:

Beginning with Line 7, the solution should read as follows:

When the tube-wall resistance is neglected, R_f can be calculated.

$\frac{1}{U_o} = \frac{A_o}{h_i A_i} + R_f + \frac{1}{h_o}$	$A_n = \pi D_n L$ $D_n = \text{tube diameter at } n$
$p = 1 A_o 1$	L = tube length
$K_f = \frac{1}{U_o} - \frac{1}{h_i A_i} - \frac{1}{h_o}$	
$R = \frac{1}{2} = \frac{\pi D_o L}{2} = \frac{1}{2}$	
$K_f = \frac{1}{U_o} - \frac{1}{h_i \pi D_i L} - \frac{1}{h_o}$	
$R_{-} = \frac{1}{D_{o}} = \frac{D_{o}}{D_{o}} = \frac{1}{D_{o}}$	
$K_f = \frac{1}{U_o} = \frac{1}{h_i D_i} = \frac{1}{h_o}$	
1 25 mm	1
$-\frac{1}{700 \text{ W/(m^2 \cdot K)}} - \frac{1}{\left[2,500 \text{ W/(m^2 \cdot K)}\right](19 \text{ mm})}$	$-\frac{1}{1,500}$ W/(m ² ·K)
2	
$= 0.00024 \text{ m}^2 \cdot \text{K/W}$	

THE CORRECT ANSWER IS: B