CHANGES for

FE Reference Handbook 10.2 ISBN: 978-1-947801-11-0 Fourth printing, July 2022

Errata posted July 11, 2022

Errata below has been corrected in *FE Reference Handbook* 10.2. The exam will be administered using the updated version of the handbook.

Register or log in to your MyNCEES account to download a free version of the *FE Reference Handbook*.

UNITS AND CONVERSION FACTORS

p. 3

Added revolution (rev) and RPM (revolution per minute) to table.

Multiply	By	To Obtain		
radian (rad) revolution (rev)	180/π 2 × π	degree radian		
rpm (revolutions per minute)	$2 \times \pi/60$	radian/second		

SAFETY

p. 26

Updated table, added bold lines to distinguish sections, and added a note.

Detailed Corrosion Data on Construction Materials

KEY TO CHARTS 300 300 200 100 0 50 100 CONCENTRATION, %	ACID, ACETIC	ACID, HYDROCHLORIC	AMMONIA, AQUEOUS	ACID, NITRIC	HYDROGEN PEROXIDE	METHANOL	SODIUM HYDROXIDE
COPPER, AL BRONZE, TIN BRONZE \triangle = < 0.002 IN. PER YR.	AERATED						
NEOPRENE ▲ = SATISFACTORY ◎ = FOR LIMITED USE ONLY ▼ = UNSATISFACTORY	0			~	~~~		
POLYETHYLENE \triangle = COMPLETE RESISTANCE \bigcirc = SOME ATTACK \bigtriangledown = ATTACK OR DECOMPOSITION			A /				
RUBBER, BUTYL \triangle = SATISFACTORY \bigcirc = SATISFACTORY FOR LIMITED USE ∇ = GENERALLY UNSATISFACTORY							
STAINLESS STEEL, TYPE 316 \triangle = < 0.002 IN. PER YR. \bigcirc = < 0.02 IN. PER YR. \square = 0.02 - 0.05 IN. PER YR. ∇ = > 0.05 IN. PER YR.	0000						000
STEEL $\triangle = < 0.002$ IN. PER YR. $\bigcirc = < 0.02$ IN. PER YR. $\square = 0.02 - 0.05$ IN. PER YR. $\nabla = > 0.05$ IN. PER YR.					ALKALINE OVVV OVVV OVVV OVVV		
STYRENE COPOLYMERS, HIGH IMPACT \triangle = SATISFACTORY \bigcirc = SATISFACTORY FOR LIMITED USE ∇ = UNSATISFACTORY			7 A 7 A 5	2700A	0		TRESS CRACKS

Note: Symbols on vertical heavy lines represent 100% concentration. Symbols on horizontal heavy lines represent 300°F temperature.

MATHEMATICS

p. 48

Equation number 22 under Derivatives should read as follows:

22.
$$\frac{d(\sin^{-1} u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$
 $(-\pi/2 \le \sin^{-1} u \le \pi/2)$

ENGINEERING PROBABILITY AND STATISTICS

p. 69

Updated the variable definitions for the least squares equation.

Linear Regression and Goodness of Fit

Least Squares

$$\hat{v} = \hat{a} + \hat{b}x$$

where

$$\hat{b} = S_{xy}/S_{xx}$$

$$\hat{a} = \overline{y} - \hat{b}\overline{x}$$

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - (1/n) \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)$$

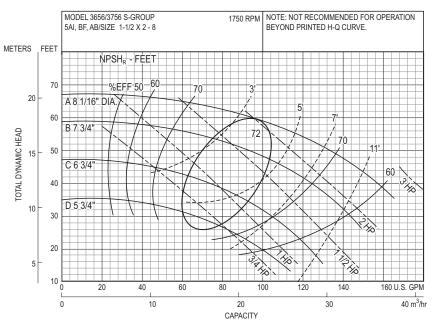
$$S_{xx} = \sum_{i=1}^{n} x_i^2 - (1/n) \left(\sum_{i=1}^{n} x_i\right)^2$$

$$\overline{y} = (1/n) \left(\sum_{i=1}^{n} y_i\right)$$

$$\overline{x} = (1/n) \left(\sum_{i=1}^{n} x_i\right)$$

where

n = sample size


FLUID MECHANICS

p. 191

Updated the y axis on the graph, changing 100 to 160.

Fluid Flow Machinery

Centrifugal Pump Characteristics

CENTRIFUGAL PUMP CURVE FOR A GOULD MODEL 3656/3756 PUMP

Aerodynamics

Airfoil Theory

pp. 198–199

Updated the equation and variables for the aspect ratio AR.

$$AR = \frac{b^2}{A_p}$$

where

b = span length $A_p = \text{plan area}$

CIVIL ENGINEERING

p. 276

Moved table from Unified Design Provisions to just under Beams-Shear

Beams—Shear

	$\frac{\phi V_c}{2} < V_u \le \phi V_c$	$V_u > \phi V_c$
	Smaller of: $s = \frac{A_v f_y}{50b_w}$ $s = \frac{A_v f_y}{0.75 b_w \sqrt{f_c'}}$	$V_{s} = \frac{V_{u}}{\phi} - V_{c}$ $s = \frac{A_{v} f_{y} d}{V_{s}}$
Maximum permitted spacing	Smaller of: $s = \frac{d}{2}$ OR s = 24"	$V_{s} \leq 4 \ b_{w} \ d \sqrt{f_{c}}'$ Smaller of: $s = \frac{d}{2} \text{OR}$ s = 24'' $V_{s} > 4 \ b_{w} \ d \sqrt{f_{c}}'$ Smaller of: $s = \frac{d}{4}$ s = 12''

pp. 303-304

Basic Freeway Segment Highway Capacity

Reorganized this section and replaced tables.

Parameter	Definition and Units	Basic Freeway Segments
FFS	Base segment free-flow speed (mph)	Measured or predicted with equation
FFS_{adi}	Adjusted free-flow speed (mph)	$FFS_{adi} = FFS \times SAF$
SAF	Speed adjustment factor (decimal)	SAF = 1.00 for base conditions
С	Base segment capacity (pc/h/ln)	c = 2,200 + 10(FFS - 50) $c \le 2,400$ $55 \le FFS \le 75$
\mathcal{C}_{adj}	Adjusted segment capacity (pc/h/ln)	$c_{adi} = \mathbf{c} \times CAF$
CAF	Capacity adjustment factor (decimal)	CAF = 1.00 for base conditions
D_{c}	Density at capacity (pc/mi/ln)	45
BP	Breakpoint (pc/h/ln)	$BP_{adi} = [1,000 + 40 \times (75 - FFS_{adj})] \times CAF^2$
а	Exponent calibration parameter (decimal)	2.00

Parameters for Speed-Flow Curves for Basic Freeway Segments

Adapted from *HCM: Highway Capacity Manual, 6th ed., A Guide for Multimodal Mobility Analysis,* Transportation Research Board of the National Academies, Washington, DC, 2016.

where

pc/h/ln = passenger cars per hour per lane

$$\begin{split} S &= FFS_{adj} & v_p \leq BP \\ S &= FFS_{adj} - \frac{\left(FFS_{adj} - \frac{c_{adj}}{D_c}\right) \left(v_p - BP\right)^a}{\left(c_{adj} - BP\right)^a} & BP < v_p \leq c \\ FFS &= BFFS - f_{LW} - f_{RLC} - 3.22 \ TRD^{0.84} \end{split}$$

where

FFS = free flow speed of basic freeway segment (mph)

BFFS = base free flow speed of basic freeway segment (mph); default is 75.4 mph

 f_{LW} = adjustment for lane width (mph)

 f_{RLC} = adjustment for right-side lateral clearance (mph)

TRD = total ramp density (ramps/mi)

Adjustment to FFS for Average Lane Width for Basic Freeway	
and Multilane Highway Segments	

Average Lane Width (ft)	Reduction in FFS, <i>f</i> _{LW} (mph)			
≥12	0.0			
≥11 – 12	1.9			
≥10 – 11	6.6			

HCM: Highway Capacity Manual, 6th ed., A Guide for Multimodal Mobility Analysis, Transportation Research Board of the National Academies, Washington, DC, 2016, Exhibit 12-20, p. 12-29.

Right-Side Lateral	La	Lanes in One Direction				
Clearance (ft)	2	3	4	≥5		
≥6	0.0	0.0	0.0	0.0		
5	0.6	0.4	0.2	0.1		
4	1.2	0.8	0.4	0.2		
3	1.8	1.2	0.6	0.3		
2	2.4	1.6	0.8	0.4		
1	3.0	2.0	1.0	0.5		
0	3.6	2.4	1.2	0.6		

Adjustment to FFS for Right-Side Lateral Clearance, $f_{_{RLC}}$ (mph), for Basic Freeway Segments

HCM: Highway Capacity Manual, 6th ed., A Guide for Multimodal Mobility Analysis, Transportation Research Board of the National Academies, Washington, DC, 2016, Exhibit 12-21, p. 12-29.

$$v_p = \frac{V}{PHF \times N \times f_{HV}}$$

where

 v_p =demand flow rate under equivalent base conditions (pc/h/ln)V=demand volume under prevailing conditions (veh/h)PHF=peak-hour factorN=number of lanes in analysis direction f_{HV} =adjustment factor for presence of heavy vehicles in traffic stream, calculated with

$$f_{HV} = \frac{1}{1 + P_T (E_T - 1)}$$

where

 f_{HV}

= heavy-vehicle adjustment factor

 P_T = proportion of single unit trucks and tractor trailers in traffic stream

 E_{T} = passenger-car equivalent (PCE) of single unit truck or tractor trailer in traffic stream

	PCE by Type of Terrain			
Vehicle	Level Rolling			
E_{τ}	2.0	3.0		

 $D = \frac{v_p}{S}$

where

D = density(pc/mi/ln)

 v_p = demand flow rate (pc/h/ln)

S = mean speed of traffic stream under base conditions (mph)

Level of Service (LOS)	Density (pc/mi/ln)
А	≤11
В	>11 – 18
С	>18 – 26
D	>26 – 35
E	>35 – 45
F	Demand exceeds capacity >45

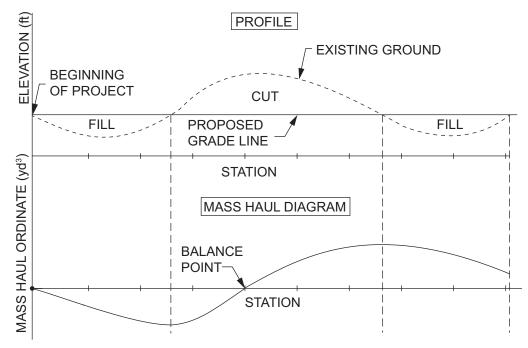
p. 308

Earthwork formulas

Inserted the Mass Haul Diagram.

Average End Area Formula $V = L(A_1 + A_2)/2$

Prismoidal Formula $V = L (A_1 + 4A_m + A_2)/6$


where

 A_m = area of mid-section

 $L = \text{distance between } A_1 \text{ and } A_2$

Pyramid or Cone

V = h (area of base)/3

Mass haul ordinate is the cumulative total of excavation and embankment at a given station.

Earthwork may be adjusted to account for shrinkage by increasing fill at each station by the shrinkage factor.

ELECTRICAL AND COMPUTER ENGINEERING

p. 366

Reworded the AC Machines section.

AC Machines

The synchronous speed n_s for ac motors is given by

 $n_s = 120 f/p$

where

f = the line voltage frequency (Hz)

p = the number of poles

MECHANICAL ENGINEERING

p. 442

Updated the ASME standard as shown.

Geometric Dimensioning and Tolerancing (GD&T)

Feature Control Frame

From the ASME Y14.5 standard: "A feature control frame is a rectangle divided into compartments containing the geometric characteristic symbol followed by the tolerance value or description, modifiers, and any applicable datum reference features."

p. 445

Removed Concentricity and Symmetry from the table in the Location section.

Tolerance Types	ASME Symbol	Drawing Callout Example	Drawing Callout Meaning	Tolerance Zone Definition (for Example)	Zone Modifiers Allowed	Datums Used	Additional Comments
Orientation	∠ Angularity		Datum B	Parallel planes, at a specified basic angle from a datum plane(s) within which all surface elements must lie	No (Surface)	Yes	Also controls surface flatness. A basic angle must be used from the toleranced feature to the datum referenced. MMC can be used when anyularity is applied to an axis or centerplane of a feature.
	L			Parallel planes, at 90 degrees basic (perpendicular) to a datum plane(s) within which the elements of a surface must lie	No (Surface)	Yes	 A refinement of size. Also controls surface flatness.
	Perpendicularity		Datum A at MMC (04.8) 00.5 Tol. Zone at LMC (05.2)	Cylindrical boundary, at 90 degrees basic (perpendicular) to a datum plane within which the axis of the feature must lie	Yes (Axis)	Yes	Not a refinement of size. Hole must also be within size limits. Calculation
	// Parallelism		Datum A	Parallel planes, parallel to a datum plane (or axis) within which the elements of a surface must lie	No (Surface)	Yes	Refinement of size. Also controls surface flatness. Can be applied to an axis of a feature in which the zone could be parallel planes or a cylindrical tolerance zone. MAC can be used when parallelism is applied to an axis or centerplane of a feature.
Location	ation Position		Datum C 00.1 Tol. Zone at MMC (04.8) C 05.1 Zone at LMC (05.2) C 05.1 Zone at LMC (05.2) Datum B	Cylindrical boundary, within which the center axis of a cylindrical feature of size is permitted to vary from the true (theoretically exact) position	Yes	Yes	 Primary control for features of size. Tolerance zone also defines the limits of variation cylinder or slot in relationship to a datum(s). Where feature control finance contain the same
			Datum B dt LMC (5.2)	Parallel planes, within which the center plane of a slot is permitted to vary from the true (theoretically exact) position	Yes	Yes	datums in the same order of precedence with the same modifying symbols. It was a considered a single composite pattern. If not required, it must state SEPARATE REQUIREMENT.
Runout	/ Circular Runout	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	R 0.1 Tol. Zone Datum A	Two concentric circles, within which each circular element must lie in relationship to the datum axis	No	Yes	A axis to surface control. A composite control which includes roundness and axis offset. Applies to each drcular element independently. Datum applied on an RFS basis only.
Kulou	<u></u> Total Runout		P 0.1 ToL Zone Datum A	Two concentric cylinders, within which all circular elements must lie (simultaneously) in relationship to the datum axis	No	Yes	An axis to surface control. Provides composite control of all surface elements. Used to control of cumulative variations of circularity, straightness, taper, and axis offset. Datum applied on an RFS basis only.
Rule #1 Individual Feature of Size Where only a tolerance of size is specified, the limits of size of an individual feature prescribe the extent to which variations in tis geometric form, as well as size, are allowed.		Variations of Form (Envelope Prin beyond a boundary (envelope) of pr EXTERNAL FEATURE TO 222 (MAC) TO 223 (MAC) BE PERFECT NT C223 (MAC) FEATURE CAT C223 (MAC) FEATURE CAT C223 (MAC) FEATURE FEATURE CAT C223 (MAC) FEATURE FEATURE CAT C223 (MAC) FEATURE FEATURE FEATURE CAT C223 (MAC) FEATURE FEATURE FEATURE FEATURE FEATURE	rice: form at MMC.	Variations of Size The actual local size of a each cross section shall tolerance of size. Perfect Form at MMC Where it is desired to po surfaces of a feature to of perfect form at MMC. PERFECT FORM AT MM is specified.	be within the spec C Not Required rmit a surface or exceed the bounda a note such as	fied ry	Rule #2 All Applicable Geometric Tolerances RFS applies, with respect to the individual tolerance, datum reference, or both, where no modifying symbol is specified. MMC and LMC must be specified on the drawing where it is required.

Geometric Dimensioning and Tolerancing (GD&T) (continued)

Courtesy of Dr. Greg Hetland, International Institute of Geometric Dimensioning & Tolerancing, www.iigdt.com.