

NCEES Principles and Practice of Engineering Examination NAVAL ARCHITECTURE AND MARINE ENGINEERING CBT Exam Specifications

Effective Beginning October 1, 2022

- The exam topics have not changed since April 2016 when they were originally published.
- The PE Naval Architecture and Marine Engineering exam is computer-based. It is closed book with an electronic reference.
- Examinees have 9.5 hours to complete the exam, which contains 85 questions. The 9.5-hour time includes a tutorial and an optional scheduled break. Examinee works all questions.
- The exam uses both the International System of units (SI) and the US Customary System (USCS).
- The exam is developed with questions that will require a variety of approaches and methodologies, including design, analysis, and application.
- The knowledge areas specified as examples of kinds of knowledge are not exclusive or exhaustive categories.

1	Na	vəl	Architecture	Number of Questions
••	A.	H	adrostatics and Stability	8-12
		1.	Tools, methods, and procedures (e.g., Bonjean curves, curves of for integration methods, inclining, sallying)	m,
		2.	Intact stability (e.g., center of gravity, righting arm, free-surface, we docking, grounding)	eight shifts,
		3.	Damage stability (e.g., floodable length, probabilistic stability, right down flooding, impact of list, free communication)	ing arm,
		4.	Dynamic stability (e.g., impact on stability caused by wind and wave parametric roll, porpoising, broaching, chine walking, green water)	es, towing,
		5.	Transitional stability (e.g., submerged to surface, displacement to p hull borne to foil borne, semi-submersible)	laning,
	B.	Hy	vdrodynamics	7-11
		1.	Resistance and propulsion (e.g., different hull forms, shallow water ice, channel blockage)	effects,
		2.	Propulsor, foil, and appendage design including cavitation	
		3.	Maneuvering and directional stability (e.g., steering, rudders, contr	ol surfaces)
		4.	Seakeeping (e.g., forces and motions, added mass, wave damping, response amplitude operators, motion stabilization)	
		5.	Station keeping (e.g., anchoring, dynamic positioning, mooring)	
		6.	Model testing (e.g., scaling laws)	
	C.	Oc	ean Engineering	2-4
		1.	Wind, waves, and currents (e.g., wave theories, wave spectra, tides, sea state)	wind scale,
		~	Manie materia (a. flastic structure to see had hardhing a sh	

2. Mooring systems (e.g., floating structure to sea bed, berthing, anchoring)

- 1. Internal loads (e.g., sloshing, tank loading, hydrostatic loads)
- 2. External loads (e.g., slamming, impact, berthing, collision, drydocking, grounding, mooring, launching, ice, wind, waves)
- 3. Primary structures (e.g., hull girder, midship section)
- 4. Secondary structures (e.g., frames, beams, girders, trusses, plates, columns, pillars, foundation)
- 5. Tertiary structures (e.g., clips, brackets, knees, gussets)
- 6. Structural considerations (e.g., stress concentration, fatigue, corrosion, thermal variations)
- 7. Analytical tools (e.g., finite element analysis [FEA], buckling analysis, boundary element methods)
- 8. Hull responses and reactions (e.g., vibration, impulse, whipping, springing, slamming)
- 9. Material selection (e.g., ferrous materials, non-ferrous materials, composites, plastics, wood, concrete)

2. Marine Engineering

- A. Piping System Design
 - 1. Component selection (e.g., valves and control devices, strainers, filters, pumps)
 - 2. Design considerations (e.g., viscosity, limiting flow speeds, flow effects, noise, cavitation, pipe hammer, pressure)
 - 3. Layout (e.g., piping support, arrangement, maintenance)
 - 4. Calculations (e.g., pipe flow, pipe resistance, pressure drop, stress analysis)
- B. Propulsion and Power Generation
 - 1. Internal combustion plants
 - 2. Gas turbine plants
 - 3. Fuels and lubrication (e.g., properties, handling systems, effects on equipment, choices of fuels and lubricants)
 - 4. Drive train (e.g., propulsors, gearing, shafting, bearings)
 - 5. Auxiliary systems (e.g., fuel systems, exhaust systems, starting systems)
 - 6. Drive train vibration (e.g., flow induced, machinery induced, shafting)
- C. Auxiliary Equipment Selection
 - 1. Heat exchangers
 - 2. Pumps and compressors
 - 3. Habitability support (e.g., auxiliary boiler, potable water, galley equipment)
 - 4. Environmental protection (e.g., oily water separation, sewage treatment, solid waste, ballast water treatment)
- D. HVAC/Refrigeration
 - 1. Design considerations (e.g., limiting flow speeds, flow effects, noise, pressure, air turnover, temperature, filtration, insulation, indoor air quality)
 - 2. Layout (e.g., ducting support, piping support, arrangement, maintenance)
 - 3. Calculations (e.g., flow, air balance, pressure drop, heat balance)
- E. Electrical Systems
 - 1. Component selection (e.g., generators, transformers, motors, batteries, switch gear, cables)
 - 2. Design considerations (e.g., power load, overload, redundancy, power factor, emergency generator requirements, bonding, safety)
 - 3. Calculations (e.g., electrical load analysis, cable sizing, voltage drop, power conversion)

26 - 40

6 - 9

9 - 14

3-5

4-6

4 - 6

3.	Common 1				
	A.	Corrosion			
		1.	Elements of corrosion (e.g., galvanic series, general wastage, pitting, crevice and stress corrosion, fretting, stray currents)		
		2.	Corrosion-control applications (e.g., impressed current systems, sacrificial anodes, bonding and grounding, coating selection and procedures)		
	B.	Hu	ll Outfitting	4-6	
		1.	Deck machinery (e.g., winches, anchoring and mooring equipment, gangways)	
		2.	Cargo handling (e.g., closed loading/unloading systems, cargo pumps, cranes, ramps, hatches, containers, inert gas and vapor recovery)		
		3.	Steering and maneuvering systems (e.g., thrusters, rudders)		
		4.	Fittings (e.g., bollards, bitts, chocks, rigging)		
		5.	Cargo securing and safety (e.g., container, liquid, break bulk, bulk)		
	C.	Ac	commodation Outfitting	2-4	
		1.	Fire protection (e.g., structural, personnel, fire detection, fire zone definitions egress, firefighting equipment)	,	
		2.	Arrangements and details (e.g., joiner work, workflow, access, equipment location, emergency evacuation)		
	D.	Shipbuilding and Repair		2-4	
		1.	Non-destructive testing (e.g., dye-penetrant, magnetic particle, ultrasonic, radiographic)		
		2.	Dock and sea trials		
	E.	We	elds and Connections	3-5	
		1.	Connectors and fasteners (e.g., rivets, bolts, adhesives) and bimetallic joints (e.g., explosion bonding)		
		2.	Welding design and procedures (e.g., stresses, symbols, filler materials, methods, inspection, testing)		
	F.	Ru	les and Regulations	4-6	
		1.	Statutory requirements (e.g., U.S. Coast Guard, IMO, OSHA, EPA, ADA, REACH [Registration Evaluator Authorization and Restriction of Chemicals], IECEX, ATEX)		
		2.	Admeasurement and international conventions and agreements (e.g., STCW, MARPOL, SOLAS)		
		3.	Construction, design, and inspection standards (e.g., classification societies, ABYC, ASTM, NFPA, MCA, IEEE, AWS, API, Panama Canal Regulations)		