

Vertical Forces (Gravity/Other) and Incidental Lateral Component of the Structural Engineering BREADTH Exam Specifications

Effective Beginning with the April 2018 Examinations

- The 4-hour **Vertical Forces (Gravity/Other) and Incidental Lateral** breadth examination is offered on Friday morning and focuses on gravity loads. It contains 40 multiple-choice questions.
- The exam uses the US Customary System (USCS) of units.
- The exam is developed with questions that will require a variety of approaches and methodologies, including design, analysis, and application.
- The knowledge areas specified as examples of kinds of knowledge are not exclusive or exhaustive categories.
- Score results are combined with depth exam results for final score of this component.

			Approximate Number of Questions	
I.	Ana	lysis of Structures	13	
	A. (Generation of Loads	5	
		1. Dead		
	:	2. Live (e.g., occupancy, roof, pedestrian)		
		3. Moving (e.g., vehicular, crane)		
	4	4. Impact (e.g., vehicular, crane, elevator)		
	ļ	5. Vessel collision		
		6. Earth pressure		
	•	7. Differential settlement		
		8. Hydrostatic/hydrodynamic		
		9. Flood		
		10. Snow		
		11. Rain (i.e., ponding)		
		12. Ice		
		13. Thermal		
		14. Shrinkage		
		15. Load combinations		
		16. Wind and other loads on bridges		
	B. 1	Load Distribution and Analysis Methods	8	
		1. Static (e.g., determinate and indeterminate, location of forces and		
		moments, free-body diagrams)		
		2. Shear and moment diagrams		
		3. Code coefficients and tables		
	4	4. Truss analysis methods (i.e., method of sections and/or method of		
		joints)		
		5. Approximate beam or truss analysis methods		
		6. Approximate frame analysis methods		

		7.	Influence lines	
		8.	Computer-generated structural analysis techniques (e.g., modeling,	
			interpreting and verifying results)	
II.	Design and Details of Structures		27	
	A.	Ge	neral Structural Considerations	3
		1.	Material properties and standards	
		2.	Construction administration (procedures for correcting nonconforming	
			work, testing methods, inspection methods, structural observation)	
		3.	Environmental considerations (e.g., corrosion, frost depth,	
			sustainability)	
		4.	Serviceability requirements (i.e., deflection, camber, vibration, creep,	
			movement joints)	
		5.	Fatigue (e.g., AASHTO, AISC)	
		6.	Bridge bearings	
		7.	Bridge expansion joints	
		8.	Bridge barriers	
	B.	Stı	ructural Systems Integration	2
		1.	Specifications, quality controls, and coordination with other disciplines	
		2.	Constructability	
		3.	Construction sequencing	
			Strengthening existing systems	
	C.	Stı	ructural Steel	5
		1.	Tension members	
			Columns and compression members	
		•	Trusses	
			Flexural members (e.g., beams)	
			Plate girders—straight	
		6.	Secondary support systems (e.g., masonry support angles, facade	
			support angles, struts)	
			Shear in steel members	
			Combined axial and flexural members	
			Composite design	
			. Bolted connections	
			Welded connections	
			Base plates/bearing plates	
		•	Thermal effects	
	Л		. Bridge piers ld-Formed Steel	
	D.			1
		1.	Framing Connections	
			Web crippling	
	F	-	ncrete	-
	Ľ,	1.	Flexural members (e.g., beams, joists, bridge decks, one-way slabs)	5
		1. 2.	Two-way slabs	
		2. 3.	Design for shear (e.g., beam, punching shear, shear friction)	
		3. 4.	Columns and compression members	
		4. 5.	Bridge piers/abutments	
		-	Walls	

- 7. Prestressed concrete
- 8. Post-tensioned concrete
- 9. Composite design
- 10. Attachment of elements and anchorage to concrete (e.g., inserts, attachment plates, dowels)
- 11. Crack control
- F. Wood
 - 1. Beams (i.e., sawn, glued laminated, structural composite/engineered)

4

3

4

- 2. Columns
- 3. Bearing walls
- 4. Trusses
- 5. Connections (e.g., bolted, nailed, screwed)
- G. Masonry
 - 1. Flexural members
 - 2. Compression members
 - 3. Flexural-compression members
 - 4. Bearing walls
 - 5. Attachment of elements to masonry
- H. Foundations and Retaining Structures
 - 1. Use of design pressure coefficients (e.g., active, passive, at rest, bearing, coefficient of friction, cohesion, modulus of sub-grade reaction)
 - 2. Buoyancy effects
 - 3. Retaining walls and abutments
 - 4. Spread footings
 - 5. Combined footings/mat foundations
 - 6. Piles (e.g., concrete, steel, timber)
 - 7. Drilled shafts/drilled piers/caissons
 - 8. Restrained walls (e.g., basement, vault)

STRUCTURAL ENGINEERING Design Standards¹

These standards apply to the Vertical and Lateral components of the Structural Engineering exam.

Effective Beginning with the April 2018 Examinations
--

ABBREVIATION	DESIGN STANDARD TITLE
AASHTO	<i>AASHTO LRFD Bridge Design Specifications,</i> 7th edition (without interims), American Association of State Highway & Transportation Officials, Washington, DC.
IBC	<i>International Building Code,</i> 2015 edition (without supplements), International Code Council, Falls Church, VA.
ASCE 7	<i>Minimum Design Loads for Buildings and Other Structures,</i> 3rd printing, 2010, American Society of Civil Engineers, Reston, VA.
ACI 318	<i>Building Code Requirements for Structural Concrete</i> , 2014, American Concrete Institute, Farmington Hills, MI.
AISC	<i>Steel Construction Manual,</i> 14th edition, American Institute of Steel Construction, Inc., Chicago, IL.
AISC	<i>Seismic Design Manual,</i> 2nd edition, American Institute of Steel Construction, Inc., Chicago, IL.
AISI S100	North American Specification for the Design of Cold-Formed Steel Structural Members, 2012 edition, American Iron and Steel Institute, Washington, DC.
AISI S213	North American Standard for Cold-Formed Steel Framing–Lateral Design 2007 Edition with Supplement No. 1, October 2009 (reaffirmed 2012), American Iron and Steel Institute, Washington, DC.
NDS	National Design Specification for Wood Construction ASD/LRFD, 2015 edition & National Design Specification Supplement, Design Values for Wood Construction, 2015 edition, American Forest & Paper Association, Washington, DC.
NDS	Special Design Provisions for Wind and Seismic with Commentary, 2015 edition, American Forest & Paper Association, Washington, DC.
TMS 402/602	<i>Building Code Requirements and Specifications for Masonry Structures</i> (and related commentaries), 2013; The Masonry Society, Boulder, CO; American Concrete Institute, Detroit, MI; and Structural Engineering Institute of the American Society of Civil Engineers, Reston, VA.

Notes

1. Solutions to exam questions that reference a standard of practice are scored based on this list. Solutions based on other editions or standards will not receive credit. All questions use the US Customary System (USCS) of units.