Revisions are shown in red.

Question 120, p. 28

The ASD option in line 10 should read as follows: $M_{nx}/\Omega_b = 173$ ft-kips

Question 121, p. 29

The column should be specified as follows:

The figure shows a $W14 \times 53$ column and base plate.

Design Code: AISC: *Steel Construction Manual*, 14th edition.

Design Data:

$F_y = 36 \text{ ksi}$
$F_y = 50 \text{ ksi}$
$f'_{c} = 3 \text{ ksi}$
150 kips (ASD) or 190 kips (LRFD)

Question 124, p. 32

The answer options should read as follows:

	ASD	LRFD
(A)	1,377	2,233
(B)	2,674	4,019
(C)	3,372	5,632
(D)	4,052	6,767

Question 134, p. 42

The answer options should read as follows:

	ASD	LRFD
(A)	665	705
(B)	1,250	1,300
(C)	1,465	1,550
(D)	2,335	2,475

Question 136, p. 44

The answer options should read as follows:

	ASD	LRFD
(A)	14,200	32,400
(B)	17,600	27,100
(C)	25,500	59,400
(D)	39,300	91,500

Question 604, p. 56

The design data should read as follows:

Design Data:

$8 \frac{1}{2} \times 26 \frac{1}{8}$ " Southern Pine stress class 24F-1.7E			
8×8 Southern Pine No. 2			
ASTM A36			
ASTM A307			
New equipment load per Figure 604C (with new tension rods in place).			
Properties of existing glulam girder are given in Table 604.			

Question 702, p. 64

The assumptions should read as follows:

Bridge barrier and wearing surface are applied evenly to all girders. Ignore design tandem loading. Superstructure is a conventionally redundant system. Bridge is considered operationally important. Bridge is conventional design.

Structural Engineering Sample Questions and Solutions ISBN 978-1-932613-89-6 Copyright 2017 (November 2017, first printing) Errata posted 4/29/2019

Solution 123, p. 82

The solution should read as follows: Strength I, $M_u = 1.25(25.8 \text{ ft-kips}) + 1.75 (492.7 \text{ ft-kips}) = 894.5 \text{ ft-kips}$ AASHTO 6.13 $F_{nc} = F_{nt} = R_h F_{yf}$ of smaller of the two sections (W36×135, $S_x = 439 \text{ in}^3$) $R_h = 1.0$ since all steel is 50 ksi; $F_n = 1.0(50 \text{ ksi}) = 50 \text{ ksi}$ $\phi_f = 1.00$ AASHTO 6.5.4.2 $f_{bu} \le \phi_f R_h^{0} F_{yf}$ $f_{bu} = \frac{M_{rx}}{S_{xc}}$ $\frac{M_{rx}}{S_{xc}} \le \phi_f F_{yf}$ $M_{rx} = \phi_f F_{yf} S_{xc} = 1.00 (50 \text{ ksi})(439 \text{ in}^3) \frac{1}{12} = 1,829 \text{ ft-kips}$ AASHTO 6.10.8.1.3-1 Design connection for average $= \frac{894.5 \text{ ft-kips} + 1,829 \text{ ft-kips}}{2} = 1,362 \text{ ft-kips}$ AASHTO 6.13.1 or = 0.75 (1,829 \text{ ft-kips}) = 1,372 \text{ ft-kips} Controls

THE CORRECT ANSWER IS: (B)

Solution 124, p. 83

LRFD option: $M_n = S_e F_y$ Eq. C3.1.1-1 $M_n = \frac{2(0.812)(33)(1,000)}{12} = 4,466$ ft-lb $\phi_b M_n = 0.90(4,466) = 4,019$ ft-lb

THE CORRECT ANSWER IS: (B)

Solution 134, p. 89

Solution 134 should read as follows:

Working Stress Design

$$f'_m = 2,000 \text{ psi}$$

 $E_s = 29 \times 10^6$ Sec. 4.2.2.1
 $E_m = 900 f'_m$ Sec. 4.2.2.2.1
 $E_m = 900(2,000) = 1.80 \times 10^6 \text{ psi}$
 $n = E_s/E_m = 29/1.80 = 16$
 $\rho = \frac{A_s}{bd} = \frac{0.31}{(48)(\frac{7.625}{2})} = 0.0017$
 $n\rho = 0.0271$
 $k = \sqrt{n\rho^2 + 2n\rho} - n\rho = 0.207$
 $j = 1 - k/3 = 0.931$
 $F_b = 0.45 f'_m = 900 \text{ psi}$ Sec. 2.3.4.2.2
 $M_{max} = F_b bkjd^2/[2(12)] = 900(12)(0.207)(0.931)(7.625/2)^2/[2(12)]$
 $= 1,260 \text{ ft-lb/ft}$

ERRATA for Structural Engineering Sample Questions and Solutions

ISBN 978-1-932613-89-6 Copyright 2017 (November 2017, first printing) Errata posted 4/29/2019

Solution 134, p. 89 (Continued)

Strength design:

$$\phi = 0.9$$
 9.1.4.4
 $M_n = A_s f_y (d - a/2)$
 $a = \frac{A_s f_y}{0.80 f'_m b}$
 $M_n = \rho f_y b d^2 \left(1 - \frac{0.625 \rho f_y}{f'_m} \right)$
 $\rho = \frac{A_s}{b d}$
 $\rho = 0.0017$
 $A_s = 0.31 in^2 (12 in./48 in.)$
 $= 0.08 in^2/ft$
 $M_n = (0.0017)(60)(12)(3.8125)^2 [1 - 0.625(0.0017)(60)/2]$
 $= 17.2 in.-kips/ft$
 $= 1,433 ft-lb/ft$
 $\phi M_n = 1,289.7 ft-lb/ft$

THE CORRECT ANSWER IS: (B)

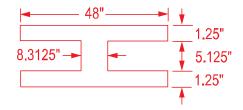
Solution 136, p. 91

The solution should read as follows:

Per Section 8.3.3.3, vertical bars must be laterally restrained. The #5 vertical reinforcing is not laterally restrained per Section 5.3.1.4; therefore analyze as an unreinforced masonry member.

ASD option:

DED


4.

h = 144 in. r = 2.86 in. h/r = 50.3 < 99

$$F_a = (1/4) f'_m \left[1 - \left(\frac{h}{140 r}\right)^2 \right]$$
 Eq. 8-21
 $F_a = (1/4)(2,000) \left[1 - \left(\frac{50.3}{140}\right)^2 \right]$
 $F_a = 435 \text{ psi}$

Net cross-sectional area of wall, An:

 $A_n = (48 \times 1.25 \times 2) + (5.125 \times 8.3125) = 162.6 \text{ in}^2/4 \text{ ft length of wall}$

 $\therefore A_n = 40.65 \text{ in}^2/\text{ft}$ $\text{Design axial load} = F_a A_n = (435 \text{ psi})(40.65 \text{ in}^2/\text{ft})$ = 17,683 plf

LRFD option:
h/r = 50.3 (See ASD option) ∴ h/r = < 99
P_n = 0.80 (0.80 A_nf'_m
$$\left[1 - \left(\frac{h}{140 r} \right)^2 \right]$$
 Eq. 9-11
 ϕ = 0.60
A_n = 40.65 in²/ft (See ASD option)
 $\phi P_n = 0.60 \left[0.80 \left(0.80 (40.65)(2,000) \left[1 - \left(\frac{50.3}{140} \right)^2 \right] \right) \right]$
 $\phi P_n = 27,189$ plf

THE CORRECT ANSWER IS: (B)

Solution 601, p. 101

(c) Wall-to-footing connection

Line 15 should read as follows:

However ℓ_{dh} not less than 8 db or 6 in. \therefore Use $\ell_{dh} = 6$ in. ACI 318, Sec. 25.4.3.1

Solution 603, p. 108–109

(c) Design the beam for maximum positive moment in the span and negative moment and shear at column grid.

Positive moment (design as T-beam):

$$M_{\rm m} = 349$$
 ft-kips

Effective flange width:

18 in. + (2)(8)(9 in.) = 162 in.

or 18 in. +
$$\frac{342 \text{ in.}}{2} + \frac{333 \text{ in.}}{2} = 355.5 \text{ in}$$

or 18 in. + $(2)\frac{324 \text{ in.}}{8} = 99 \text{ in.}(\text{controls})$

$$d = 24 - (1.5 + 0.5 + 0.5) = 21.5$$
 in.

From design aids:

$$M_u / \phi bd^2 = \frac{349 \times 12,000}{0.9 \times 99 \times 21.5^2} = 101.7$$

(Note: since the thickness of the slab flanges > a, design as rectangular section with tension reinforcing only)

From design aids table, $\rho = 0.0018$

 $A_{s} = \rho bd = 0.0018 \times 99 \times 21.5 = 3.83 \text{ in}^{2}$

Min steel A_{s min} =
$$3\sqrt{f'_c} b_w d/f_y = \frac{3\sqrt{4,000 \times 18 \times 21.5}}{60,000}$$
 ACI 318 Sec. 9.6.1.2
= 1.22 in² < 200 b_w d/f_y = $\frac{200 \times 18 \times 21.5}{60,000}$ = 1.29 in²
∴ A_{s required} = 3.83 in² Use (5) #8 bars A_{s provided} = 3.95 in²

ACI 314 Sec. 6.3.2.1

603. (Continued)

Negative moment at exterior face of first interior column:

$$\begin{split} M_{u} &= 507 \text{ ft-kips} \qquad b = 18 \text{ in.} \qquad d = 21.5 \text{ in.} \\ \frac{M_{u}}{\phi bd^{2}} &= \frac{507 \times 12,000}{0.9 \times 18 \times 21.5^{2}} = 812.5 \\ \text{From design aids table, } \rho &= 0.0158 \\ A_{s} &= \rho bd = 0.0158 \times 18 \times 21.5 = 6.12 \text{ in}^{2} \\ \text{Min steel } A_{s \text{ min}} &= 3\sqrt{f_{c}'} (2b_{w}) d/f_{y} = \frac{3\sqrt{4,000} \times (2 \times 18) \times 21.5}{60,000} \\ &= 2.45 \text{ in}^{2} < 200 (2b_{w}) d/f_{y} = \frac{200 \times (2 \times 18) \times 21.5}{60,000} = 2.58 \text{ in}^{2} \\ \therefore A_{s \text{ required}} &= 6.12 \text{ in}^{2} \qquad \text{Use (5) \#10 bars} \qquad A_{s \text{ provided}} = 6.35 \text{ in}^{2} \end{split}$$

Shear:

$$V_{u} = 104.0 \text{ kips}$$

$$1/2 \ \phi V_{c} = \frac{1}{2} \left(\phi 2bd \sqrt{f_{c}'} \right) = \frac{0.75 \times 2 \times 18 \times 21.5 \times \sqrt{4,000}}{(2)(1,000)} = 18.4 \text{ kips} < 104.0 \text{ kips}; \text{ Shear steel req.}$$
Use #4; $A_{v} = 2 \times 0.2 = 0.4 \text{ in}^{2}$
Spacing $s = \frac{A_{v} f_{yt} d}{V_{s} / \phi} = \frac{0.4 \times 60 \times 21.5}{\left(\frac{104.0 - 18.4(2)}{0.75}\right)} = 5.76 \text{ in.}$ Use 5 in.

Maximum spacing to provide minimum A_v:

$$s = \frac{A_v f_y}{0.75 \times \sqrt{f'_c} b_w} = \frac{(0.4)(60,000)}{0.75 \times \sqrt{4,000}(18)} = 28.1 \text{ in.}$$

$$s = \frac{A_v f_y}{50 b_w} = \frac{(0.4)(60,000)}{50(18)} = 26.7 \text{ in.}$$

$$4\sqrt{f'_c} b_w d = \frac{4\sqrt{4,000}(18)(21.5)}{1,000} = 97.9 \text{ kips}$$

$$V_s = \frac{104.0 - (2)(18.4)}{0.75} = 89.6 \text{ kips} < 97.9 \text{ kips}$$

∴ Max s = $\frac{d}{2} = \frac{21.5}{2} = 10.75 \text{ in.}$
∴ Use #4 stirrups @ 10 in. o.c.

Structural Engineering Sample Questions and Solutions ISBN 978-1-932613-89-6 Copyright 2017 (November 2017, first printing) Errata posted 4/29/2019

Solution 604, p. 113

The fourth line from the bottom should read as follows:

 $Z_{\theta}' = C_d C_g Z_{\theta} = (0.9)(0.95)(3,336) = 2,852 \text{ lb}$

Solution 703, pp. 123–128

Requirement (a), p. 123, lines 8–20, should read as follows:

$$\begin{split} &W_{n} = 16.5 - (4)(15/16) + (2)(3.5)^{2}/[(4)(3)] \\ &= 14.8 \text{ in.} \\ &A_{n} = (14.8)(1.26) \\ &= 18.65 \text{ in}^{2} \\ &A_{g} = b_{f} \times t_{f} \\ &= (16.5)(1.26) \\ &= 20.79 \text{ in}^{2} \\ &\phi_{u} = 0.80 \\ &\phi_{u} = 0.80 \\ &Art. 6.5.4.2 \\ &\phi_{y} = 0.95 \\ &F_{u} = 58 \\ &F_{u} = 58 \\ &F_{u} = 58 \\ &F_{u} = 58 \\ &F_{u} = 36 \\ &A_{e} = \frac{(0.8)(58)}{(0.95)(36)} (18.65 \text{ in}^{2}) \\ &= (1.357) (18.65 \text{ in}^{2}) = 25.31 \text{ in}^{2} > A_{g} = 20.79 \text{ in}^{2} \text{ Governs.} \end{split}$$

Requirement (a), p. 124, line 26, should read as follows: $R_{h} = 1.0$ rolled shape

Requirement (b), p. 127, lines 15–16, should read as follows:

 $\begin{array}{rcl} L_c &=& 2-0.875 \text{-in.-dia./2} & \text{Clear distance from edge of hole to edge of connected plate} \\ &=& 1.56 \text{ in.} & <2d=1.75 \text{ in.} \end{array}$

Requirement (b), p. 128, lines 1-6, should read as follows:

Bearing on splice plates:

 $\phi R_n = (0.8)(1.2)(1.56)(5/8)(58) \text{ where } \phi_{bb} = 0.8$ = 54.3 kips per bolt Does not control bolt strength

Bearing on beam flange: $\phi R_n = (0.8)(1.2)(1.56)(1.26)(58)$ = 109.4 kips per bolt Does not control bolt strength

 Requirement (b), p. 128, line 31, should read as follows:

 $R_r = R_n = (411.84) = 411.8 \text{ kips} > 255.3 \text{ kips}$ OK

 Eq. 6.13.2.2-1

Question 801, p. 180

Requirement (b) should read as follows:

(b) Determine the design wind pressure and seismic design force on the parapet. For wind, use the provisions of ASCE 7 Ch. 30 Part 6 and neglect corner zones. (Consider interior zones only.)

Solution 134, p. 216

The last two NDS tables referenced at the end of the solution should be 11.3.1.

$K_{\rm F} = 3.32$	NDS Table 11.3.1
$\phi_Z = 0.65$	NDS Table 11.3.1

Solution 803, p. 230

The last five lines of Requirement (c) should read as follows:

Alternatively, the provisions of Sec. 25.4.2.3 may be used

$$\ell_{d} = \frac{3}{40} \frac{f_{y} \Psi_{t} \Psi_{e} \Psi_{s}}{\lambda f_{c}' \left(\frac{c_{b} + K_{tr}}{d_{b}}\right)} d_{b}$$
ACI Eq. 25.4.2.3a
where $\frac{c_{b} + K_{tr}}{d} = \frac{3.313 + 0}{0.625} = 5.3 \le 2.5$ Use 2.5
 $\ell_{d} = \frac{3}{40} \frac{60(1.0)(1.0)(0.8)}{1.0(5)(2.5)} 0.625 = 12.7$ in.
Class B splice = (1.3)(12.7) = 16.5 NG

11

Solution 804, p. 232

Requirement (b) should read as follows:

V = 270 plf + 105 plf

V = 375 plf

(b) Nailing requirements of shear wall: 15/32" wood structural panels-sheathing w/ 8d nails @ 6" o.c. @ panel edges and @ 12" o.c. @ intermediate supports, $V_w = 730$ plf Footnote 3 specific adjustment factor:	NDS SDPWS Table 4.3A
= $[1 - (0.5 - G)]$ Hem-Fir G = 0.43 = $[1 - (0.5 - 0.43)] = 0.93$ $V_{Allow} = \frac{730 \text{ plf}}{2.0} \times 0.93 = 340 \text{ plf} > 270 \text{ plf}$ OK	NDS Table 12.3.3A
Bottom plate to blocking between trusses For 16d nails and 2×4 bottom plate ($t_s = 1 \ 1/2$ ") Z = 122 lb Penetration into main member (blocking): p = $3 \ 1/2 - 1 \ 1/2 - 3/4 = 1 \ 1/4$ "	NDS Table 12N
6 D = 6 (0.162) = 0.972"	
10 D = 10(0.162) = 1.62"	
\therefore 6 D \rightarrow use adj. factor footnote 3	
$z' = 122 lb \times C_D \times p / 10 d$	
$= 122 \times 1.6 \times 1.25 / 1.62 = 150 $ lb / nail	
Required spacing $=\frac{150}{270}=0.56'=6.7''$	
\therefore Attach bottom plate to blocking with 16d nails @ 6" o.c. (max.)	
Add second-floor diaphragm loads $V_{DIA} = \frac{3,130 \text{ lb}}{30 \text{ ft}} = 104.3 \text{ plf}$	

12

Structural Engineering Sample Questions and Solutions ISBN 978-1-932613-89-6 Copyright 2017 (November 2017, first printing) Errata posted 4/29/2019

804. (Continued)

Blocking between trusses to top plate (wall below) Use 16d toe nails z = 122 lb (from above) Penetration of toe nail into main member (top plate): $p = \ell \cos 30^\circ - \ell/3 = 31/2 (\cos 30^\circ) - \frac{31/2}{3} = 1.86"$ $\therefore p > 10 \text{ d}$

$$z' = 122 lb \times C_D \times C_{tn}$$

 $= 122 \times 1.6 \times 0.83 = 162$ lb / nail

Required spacing =
$$\frac{162}{375 \text{ plf}} = 0.43 \text{ ft} = 5.18 \text{ in.}$$

 \therefore Attach blocking to top plate with 16d toe nails @ 5 in. o.c. max.

Alternately, provide metal framing clips from blocking to top plate with correct combination of capacity and spacing for overall resistance of 285 plf

Net uplift holdown forces:

At location adjacent to balcony: $M_{\text{oross}} = 56,425 \text{ ft-lb} (\text{from Requirement (a)})$

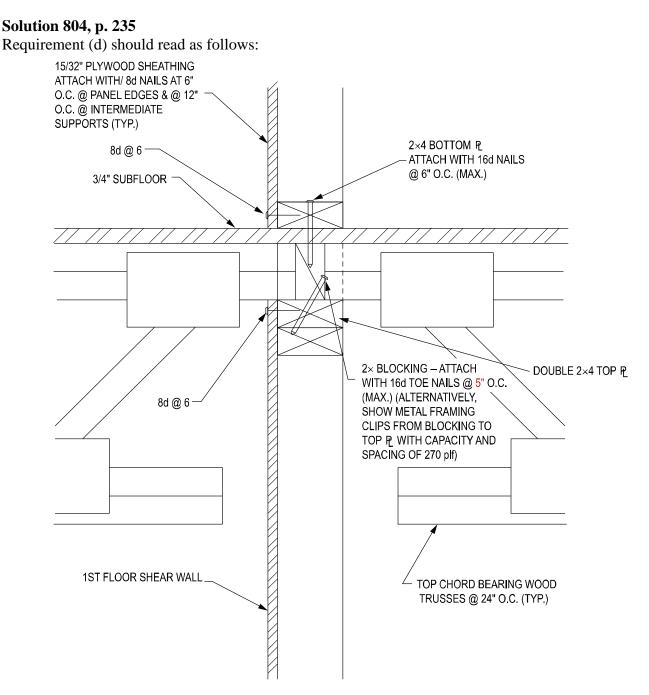
 $M_{0.6 D} = 0.6(20 \text{ psf})(20 \text{ ft})(10 \text{ ft})(10 \text{ ft}/2)$

+ 0.6(15 psf)(20 ft)(10 ft)(10 ft/2) = 21,000 ft-lb

 $M_{net} = 56,425 - 21,000 = 35,425$ ft-lb

Distance between holdown bolts ≈ 10 ft -0.75 ft = 9.25 ft

 $T_{@holdown} = \frac{M}{b} = \frac{35,425 \text{ ft-lb}}{9.25 \text{ ft}} = 3,830 \text{ lb}$


At location adjacent to 10-ft opening:

 $T_{@ holdown} = T_{shear wall} + T_{header}$

 $T_{header} = 440 \text{ plf} (10 \text{ ft}/2) - 0.6(20 \text{ psf} + 15 \text{ psf})(20 \text{ ft}) (10 \text{ ft}/2) = 100 \text{ lb}$

 \therefore T_{@ holdown} = 3,830 + 100 = 3,930 lb

NDS Table 12N

Note: This detail outlines one of numerous possible configurations. The key components for the load path include:

- 1. Plywood wall sheathing
- 2. Boundary nailing
- 3. Bottom plate
- 4. Nailing of plate to plywood floor sheathing and blocking
- 5. Nailing of blocking to double top plate
- 6. Boundary nailing
- 7. Plywood wall sheathing

Structural Engineering Sample Questions and Solutions ISBN 978-1-932613-89-6 Copyright 2017 (November 2017, first printing) Errata posted 4/29/2019

Solution 901, p. 239

Line 12 should read as follows:

$$A_{v_{min}} \ge 0.0316\sqrt{f_c'} \frac{b_v s}{f_y} = 0.0316\sqrt{3.5} \frac{48.0(6)}{60} = 0.28 \text{ in}^2$$
 OK