Revisions are shown in red.

Vertical Forces AM

Question 121, p. 29

The column should be specified as follows:

The figure shows a $W14 \times 53$ column and base plate.

Design Code: AISC: *Steel Construction Manual*, 14th edition.

Design Data:	
Base plate	$F_y = 36$ ksi
W14×53 column	$F_y = 50 \text{ ksi}$
Compressive strength of concrete	$f_{c}^{'} = 3 \text{ ksi}$
Column axial load	150 kips (ASD) or 190 kips (LRFD)

Question 124, p. 32

The answer options should read as follows:

	ASD	LRFD
(A)	1,377	2,233
(B)	2,674	4,019
(C)	3,372	5,632
(D)	4,052	6,767

Vertical Buildings PM

Question 604, p. 56

The design data should read as follows:

Design Data:

6		
Existing glulam girder	8 1/2" \times 26 1/8" Southern Pine stress class 24F-1.7E	
New center post	8×8 Southern Pine No. 2	
New steel plate	ASTM A36	
New bolts	ASTM A307	
New equipment load per Figure 604C (with new tension rods in place).		
Properties of existing glulam girder are given in Table 604.		

Eq. C3.1.1-1

Vertical Forces AM

Solution 124, p. 83

LRFD option:

$$M_n = S_e F_y$$

 $M_n = \frac{2(0.812)(33)(1,000)}{12} = 4,466 \text{ ft-lb}$
 $\phi_b M_n = 0.90(4,466) = 4,019 \text{ ft-lb}$

THE CORRECT ANSWER IS: (B)

Solution 134, p. 89

Working Stress Design

$$f'_m = 2,000 \text{ psi}$$

 $E_s = 29 \times 10^6$ Sec. 4.2.2.1
 $E_m = 900 f'_m$ Sec. 4.2.2.2.1
 $E_m = 900(2,000) = 1.80 \times 10^6 \text{ psi}$
 $n = E_s/E_m = 29/1.80 = 16$
 $\rho = \frac{A_s}{bd} = \frac{0.31}{(48)(\frac{7.625}{2})} = 0.0017$
 $n\rho = 0.0271$
 $k = \sqrt{n\rho^2 + 2n\rho} - n\rho = 0.207$
 $j = 1 - k/3 = 0.931$
 $F_b = 0.45 f'_m = 900 \text{ psi}$ Sec. 2.3.4.2.2
 $M_{max} = F_b bkjd^2/[2(12)] = 900(12)(0.207)(0.931)(7.625/2)^2/[2(12)]$
 $= 1,260 \text{ ft-lb/ft}$

Vertical Buildings PM

Solution 601, Requirement c, p. 101

(c) Wall-to-footing connection

Line 15 should read as follows:

However ℓ_{dh} not less than 8 db or 6 in. \therefore Use $\ell_{dh} = 6$ in. ACI 318, Sec. 25.4.3.1

Solution 603, Requirement c, p. 108–109

(c) Design the beam for maximum positive moment in the span and negative moment and shear at column grid.

Positive moment (design as T-beam): $M_u = 349$ ft-kips Effective flange width: 18 in. + (2)(8)(9 in.) = 162 in.or $18 \text{ in.} + \frac{342 \text{ in.}}{2} + \frac{333 \text{ in.}}{2} = 355.5 \text{ in.}$ or $18 \text{ in.} + (2)\frac{324 \text{ in.}}{8} = 99 \text{ in.}(\text{controls})$ d = 24 - (1.5 + 0.5 + 0.5) = 21.5 in.From design aids:

$$M_u / \phi bd^2 = \frac{349 \times 12,000}{0.9 \times 99 \times 21.5^2} = 101.7$$

(Note: since the thickness of the slab flanges > a, design as rectangular section with tension reinforcing only)

From design aids table, $\rho = 0.0018$

$$A_{s} = \rho bd = 0.0018 \times 99 \times 21.5 = 3.83 \text{ in}^{2}$$

Min steel $A_{s \min} = 3\sqrt{f'_{c} b_{w}} d/f_{y} = \frac{3\sqrt{4,000} \times 18 \times 21.5}{60,000}$
ACI 318 Sec. 9.6.1.2
$$= 1.22 \text{ in}^{2} < 200 b_{w} d/f_{y} = \frac{200 \times 18 \times 21.5}{60,000} = 1.29 \text{ in}^{2}$$

$$\therefore A_{s \text{ required}} = 3.83 \text{ in}^{2}$$
 Use (5) #8 bars $A_{s \text{ provided}} = 3.95 \text{ in}^{2}$

ACI 314 Sec. 6.3.2.1

ERRATA for

Structural Engineering Practice Exam ISBN 978-1-932613-89-6 Copyright 2017 (November 2017 First Printing) Errata posted 7-12-2018

603. (Continued)

Negative moment at exterior face of first interior column:

$$\begin{split} M_u &= 507 \text{ ft-kips} \quad b = 18 \text{ in.} \qquad d = 21.5 \text{ in.} \\ \frac{M_u}{\phi b d^2} &= \frac{507 \times 12,000}{0.9 \times 18 \times 21.5^2} = 812.5 \\ \text{From design aids table, } \rho &= 0.0158 \\ A_s &= \rho b d = 0.0158 \times 18 \times 21.5 = 6.12 \text{ in}^2 \\ \text{Min steel } A_{s \min} &= 3\sqrt{f_c'} (2b_w) d/f_y = \frac{3\sqrt{4,000} \times (2 \times 18) \times 21.5}{60,000} \\ &= 2.45 \text{ in}^2 < 200 (2b_w) d/f_y = \frac{200 \times (2 \times 18) \times 21.5}{60,000} = 2.58 \text{ in}^2 \\ \therefore A_{s \text{ required}} &= 6.12 \text{ in}^2 \qquad \text{Use (5) \#10 bars} \qquad A_{s \text{ provided}} = 6.35 \text{ in}^2 \end{split}$$

Shear:

$$\begin{split} V_{u} &= 104.0 \text{ kips} \\ 1/2 \ \phi V_{c} &= \frac{1}{2} \Big(\phi 2bd \sqrt{f_{c}'} \ \Big) = \frac{0.75 \times 2 \times 18 \times 21.5 \times \sqrt{4,000}}{(2)(1,000)} = 18.4 \text{ kips} < 104.0 \text{ kips}; \text{ Shear steel req.} \\ \text{Use } \#4; \ A_{v} &= 2 \times 0.2 = 0.4 \text{ in}^{2} \\ \text{Spacing s} &= \frac{A_{v} f_{yt} d}{V_{s} / \phi} = \frac{0.4 \times 60 \times 21.5}{\left(\frac{104.0 - 18.4(2)}{0.75}\right)} = 5.76 \text{ in. Use 5 in.} \end{split}$$

Maximum spacing to provide minimum $\boldsymbol{A}_{v}:$

$$s = \frac{A_v f_y}{0.75 \times \sqrt{f'_c} b_w} = \frac{(0.4)(60,000)}{0.75 \times \sqrt{4,000}(18)} = 28.1 \text{ in.}$$

$$s = \frac{A_v f_y}{50 b_w} = \frac{(0.4)(60,000)}{50(18)} = 26.7 \text{ in.}$$

$$4\sqrt{f'_c} b_w d = \frac{4\sqrt{4,000}(18)(21.5)}{1,000} = 97.9 \text{ kips}$$

$$V_s = \frac{104.0 - (2)(18.4)}{0.75} = 89.6 \text{ kips} < 97.9 \text{ kips}$$

$$\therefore \text{ Max s} = \frac{d}{2} = \frac{21.5}{2} = 10.75 \text{ in.}$$

$$\therefore \text{ Use \#4 stirrups @ 10 \text{ in. o.c.}}$$

Previously posted errata continued on next page

Revisions are shown in red.

Question 801, p. 180

Requirement (b) should read as follows:

(b) Determine the design wind pressure and seismic design force on the parapet. For wind, use the provisions of ASCE 7 Ch. 30 Part 6 and neglect corner zones. (Consider interior zones only.)

Solution 803, p. 230

The last five lines of Requirement (c) should read as follows:

Alternatively, the provisions of Sec. 25.4.2.3 may be used

$$\ell_{d} = \frac{3}{40} \frac{f_{y} \Psi_{t} \Psi_{e} \Psi_{s}}{\lambda f_{c}' \left(\frac{c_{b} + K_{tr}}{d_{b}}\right)} d_{b}$$
ACI Eq. 25.4.2.3a
where $\frac{c_{b} + K_{tr}}{d} = \frac{3.313 + 0}{0.625} = 5.3 \le 2.5$ Use 2.5
 $\ell_{d} = \frac{3}{40} \frac{60(1.0)(1.0)(0.8)}{1.0(5)(2.5)} 0.625 = 12.7$ in.
Class B splice = (1.3)(12.7) = 16.5 NG

Solution 804, p. 232

Requirement (b) should read as follows:

(b) Nailing requirements of shear wall:
 15/32" wood structural panels-sheathing
 w/ 8d nails @ 6" o.c. @ panel edges
 and @ 12" o.c. @ intermediate supports, $V_w = 730$ plf
 Footnote 3 specific adjustment factor:
 = [1 - (0.5 - G)]
 Hem-Fir G = 0.43
 = [1 - (0.5 - 0.43)] = 0.93
 $V_{Allow} = \frac{730 \text{ plf}}{2.0} \times 0.93 = 340 \text{ plf} > 270 \text{ plf}$ OK
 Bottom plate to blocking between trusses
 For 16d nails and 2×4 bottom plate (t_s = 1 1/2")
 Z = 122 lbNDS SDPWS Table 4.3A

6 D = 6 (0.162) = 0.972"

10 D = 10(0.162) = 1.62"

 \therefore 6 D \rightarrow use adj. factor footnote 3

Penetration into main member (blocking):

p = 31/2 - 11/2 - 3/4 = 11/4"

$$z' = 122 lb \times C_D \times p/10 d$$

 $=122 \times 1.6 \times 1.25 / 1.62 = 150$ lb / nail

Required spacing
$$=\frac{150}{270}=0.56'=6.7"$$

: Attach bottom plate to blocking with 16d nails @ 6" o.c. (max.)

Add second-floor diaphragm loads

$$V_{DIA} = \frac{3,130 \text{ lb}}{7 \times 30 \text{ ft}} = 14.9 \text{ plf}$$

V = 270 plf + 15 plf
V = 285 plf

804. (Continued)

Blocking between trusses to top plate (wall below) Use 16d toe nails z = 122 lb (from above) Penetration of toe nail into main member (top plate): $p = \ell \cos 30^\circ - \ell/3 = 31/2 (\cos 30^\circ) - \frac{31/2}{3} = 1.86"$

 $\therefore p > 10 d$

 $z' = 122 lb \times C_D \times C_{tn}$

 $= 122 \times 1.6 \times 0.83 = 162$ lb / nail

Required spacing $=\frac{162}{285 \text{ plf}} = 0.57 \text{ ft} = 6.82 \text{ in.}$

 \therefore Attach blocking to top plate with 16d toe nails @ 6 in. o.c. max. Alternately, provide metal framing clips from blocking to top plate with correct combination of capacity and spacing for overall resistance of 285 plf

Net uplift holdown forces:

At location adjacent to balcony: $M_{gross} = 56,425$ ft-lb (from Requirement (a))

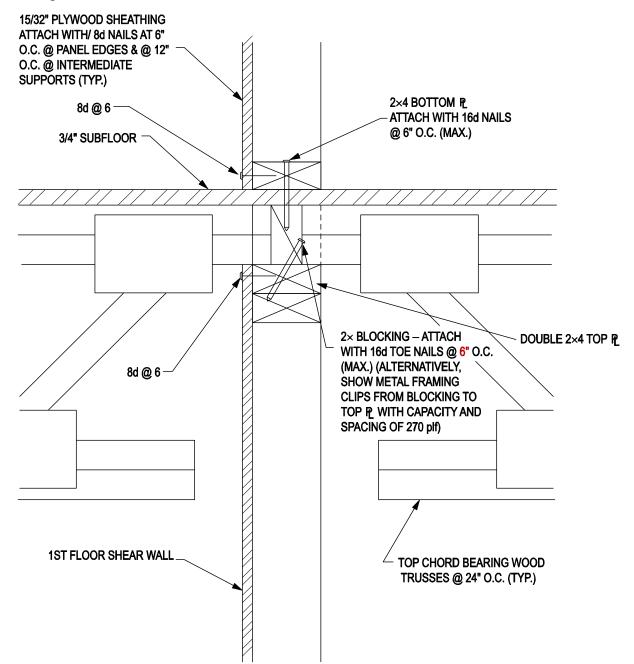
 $M_{0.6D} = 0.6(20 \text{ psf})(20 \text{ ft})(10 \text{ ft})(10 \text{ ft}/2)$

+ 0.6(15 psf)(20 ft)(10 ft)(10 ft/2) = 21,000 ft-lb

 $M_{net} = 56,425 - 21,000 = 35,425$ ft-lb

Distance between holdown bolts ≈ 10 ft -0.75 ft = 9.25 ft

$$T_{@holdown} = \frac{M}{b} = \frac{35,425 \text{ ft-lb}}{9.25 \text{ ft}} = 3,830 \text{ lb}$$


$$\begin{split} T_{@\ holdown} &= T_{shear\ wall} + T_{header} \\ At \ location \ adjacent \ to \ 10\mbox{-ft opening:} \\ T_{header} &= 440 \ plf \ (10 \ ft/2) - 0.6(20 \ psf \ + 15 \ psf)(20 \ ft) \ (10 \ ft/2) = 100 \ lb \end{split}$$

 \therefore T_{@ holdown} = 3,830 + 100 = 3,930 lb

NDS Table 12N

Solution 804, p. 235

Requirement (d) should read as follows:

Note: This detail outlines one of numerous possible configurations. The key components for the load path include:

- 1. Plywood wall sheathing
- 2. Boundary nailing
- 3. Bottom plate
- 4. Nailing of plate to plywood floor sheathing and blocking
- 5. Nailing of blocking to double top plate
- 6. Boundary nailing
- 7. Plywood wall sheathing